力扣 2025. 分割数组的最多方案数 前缀和+哈希

181 篇文章 1 订阅
32 篇文章 1 订阅

https://leetcode-cn.com/problems/maximum-number-of-ways-to-partition-an-array/
在这里插入图片描述
思路:第一次在比赛中间干掉 h a r d hard hard题,纪念一下。先计算出前缀和数组 s u m sum sum,并设整个数组的总和为 t o t tot tot,那么问题中的条件就等效于在前缀和数组中寻找 s u m i = t o t − s u m i sum_i=tot-sum_{i} sumi=totsumi i i i的个数,也即 s u m i = t o t / 2 sum_i=tot/2 sumi=tot/2,注意这里 i i i的取值范围是 [ 0 , n − 1 ) [0,n-1) [0,n1)。我们仔细思考一下,修改一个数会产生哪些影响?不妨设把 n u m s i nums_i numsi改成 k k k,那么 s u m [ 0 … i ) sum[0…i) sum[0i)无变化,但是 s u m [ i , … n ) sum[i,…n) sum[i,n)会加上 k − n u m s i k-nums_i knumsi,且整个数组的总和 t o t tot tot也需要加上 k − n u m s i k-nums_i knumsi。不妨设 d i s = k − n u m s i dis=k-nums_i dis=knumsi,在经过这次变化之后,分割的方法数就等于 j < i & & s u m j = ( t o t + d i s ) / 2 j<i\&\&sum_j=(tot+dis)/2 j<i&&sumj=(tot+dis)/2的个数加上 j > = i & & s u m j = ( t o t − d i s ) / 2 j>=i\&\&sum_j=(tot-dis)/2 j>=i&&sumj=(totdis)/2的个数。如果我们维护两个哈希表,分别记录 i i i左右两侧的前缀和数组的元素出现次数,那么就可以在 O ( 1 ) O(1) O(1)复杂度内计算出分割方法数,整个算法的复杂度降低到了 O ( n ) O(n) O(n)

class Solution {
public:
    int waysToPartition(vector<int>& nums, int k) {
        int n=nums.size();
        using ll=long long;
        vector<ll> sum(n);
        unordered_map<ll,int> leftCnt,rightCnt;
        sum[0]=nums[0];
        for(int i=1;i<n;i++)
        {
            sum[i]=sum[i-1]+nums[i];
            ++rightCnt[sum[i-1]];
        }
        int ans=0;
        ll tot=sum[n-1];
        if(!(tot&1)&&rightCnt.count(tot>>1))
            ans=rightCnt[tot>>1];
        for(int i=0;i<n;i++)
        {
            int dis=k-nums[i];
            if(!((tot+dis)&1))
            {
                ll leftVal=(tot+dis)>>1;
                ll rightVal=(tot-dis)>>1;
                int curAns=0;
                if(leftCnt.count(leftVal))
                    curAns+=leftCnt[leftVal];
                if(rightCnt.count(rightVal))
                    curAns+=rightCnt[rightVal];
                ans=max(ans,curAns);
            }
            --rightCnt[sum[i]];
             ++leftCnt[sum[i]];
        }
        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值