真题: 某车间需要用一台车床和一台铣床加工A、 B、C、D 四个零件。 每个零件都需要先用车床加工, 再用铣床加工。 车床和铣床加工每个零件所需的工时(包括加工前的准备时间以及加工后的处理时间) 如下表:
若以A、B、C、D零件顺序安排加工, 则共需32小时。 适当调整加工顺序, 可使所需总工时最短。 在这种最短总工时方案中, 零件A在车床的加工顺序安排在第 ( 69 )位, 四个零件加工共需( 70 ) 小时。
69 A.1 B. 2 C. 3 D.4
70 A. 21 B.22 C.23 D. 24
解析:本题是关于运筹学一道典型题。
注意: 加工 ABCD 4个零件, 必须先车床后铣床。
先车后铣
B零件的铣床就是从14小时开始,因为必须先将B车床, (B完成车床时耗时已达到14小时)
根据题意按照ABCD顺序加工,需要32小时,可画图如下:
现在我们需要调整顺序来节省时间, 注意需要充分利用铣床的时长,来同时进行其他零件的车床。因为:第一个零件的车床和最后一个零件的铣床不能并行,不能并行就意味着要找出最短时间, 就是说第一步的车床、最后一步的铣床必须是时长最短的。
要明白一点: 第一步的车,最后一步的铣的耗时是不可并行的, 必须等待完成。
因此,有以下分析:
B的铣床时长最小,如果加工B放在前面,B铣床时可以利用时长很短,铣床很快空闲下来, 因此应将B放在最后。
C的车床时长最小, 应该第一个加工。这是整个顺序的重点。
然后,再看A的铣床,仅次于C, 所以应排在后面, 是在C的后面, 在B的前面。
然后,就剩下D了,自然D排在第二步。
所以 顺序是 C D A B。
加工进度如下图所示: