在学习机器学习、神经网络的时候,我们最开始学的内容之一就是过拟合和欠拟合的概念。而这一概念也将会伴随着机器学习的始终,下面我来帮助大家,也帮助我自己区分一下什么是拟合?什么是过拟合?什么是欠拟合?以及产生的原因和解决的方式。
1.什么是拟合?
拟合就是说这个曲线能不能很好的描述某些样本,并且有比较好的泛化能力,用形象的方式来说就是把平面上一系列的点,用一条光滑的曲线连接起来,并能很好的通过曲线走势预测点的位置。类似下图:
2.什么是过拟合?
在训练集中表现的特别优秀,贴合训练数据的特征,但是没有泛化能力,在新的数据集中无法做出准确的预测。
举个例子,如:我们提取一条狗的特征作为训练集,如下图。我们可以获取到的特征有:黄色,毛发微微卷曲,黑色眼睛,耳朵直立,耳朵小,尾巴短小,毛发长度,身高体重等等一系列特征。提取到的特征特别多,非常的契合这个训练集。