拟合、过拟合、欠拟合

本文介绍了机器学习中的拟合、过拟合和欠拟合概念,通过实例分析了它们的含义、成因及解决策略。过拟合表现为训练集表现优秀但泛化能力弱,欠拟合则是因为模型过于简单无法捕捉数据特征。解决过拟合的方法包括增加训练集、调整模型复杂度和使用正则化,欠拟合则需要优化模型或增加特征维度。
摘要由CSDN通过智能技术生成

在学习机器学习、神经网络的时候,我们最开始学的内容之一就是过拟合和欠拟合的概念。而这一概念也将会伴随着机器学习的始终,下面我来帮助大家,也帮助我自己区分一下什么是拟合?什么是过拟合?什么是欠拟合?以及产生的原因和解决的方式。


1.什么是拟合?

拟合就是说这个曲线能不能很好的描述某些样本,并且有比较好的泛化能力,用形象的方式来说就是把平面上一系列的点,用一条光滑的曲线连接起来,并能很好的通过曲线走势预测点的位置。类似下图:

2.什么是过拟合?

在训练集中表现的特别优秀,贴合训练数据的特征,但是没有泛化能力,在新的数据集中无法做出准确的预测。

举个例子,如:我们提取一条狗的特征作为训练集,如下图。我们可以获取到的特征有:黄色,毛发微微卷曲,黑色眼睛,耳朵直立,耳朵小,尾巴短小,毛发长度,身高体重等等一系列特征。提取到的特征特别多,非常的契合这个训练集。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值