池化-MaxPool2d,AvgPool2d

#%%
import torch
from torch import nn
#%% 最大值池化
arry = torch.arange(16,dtype=torch.float32).view([1,1,4,4])
print(arry)

maxp = nn.MaxPool2d(kernel_size=2)        #kernel_size=2,stride=kernel_size
Avgp = nn.AvgPool2d(kernel_size=2)        #kernel_size=2,stride=kernel_size
    
print(maxp(arry))
print(Avgp(arry))

tensor([[[[ 0.,  1.,  2.,  3.],
          [ 4.,  5.,  6.,  7.],
          [ 8.,  9., 10., 11.],
          [12., 13., 14., 15.]]]])
最大值池化: tensor([[[[ 5.,  7.],
          [13., 15.]]]])
均值池化  : tensor([[[[ 2.5000,  4.5000],
          [10.5000, 12.5000]]]])

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值