这一节是第三部分的最后两个方法-多任务学习和元学习。
3.6 多任务学习
除特质特征等位基因外,治疗组和对照组始终具有一些共同的特征。自然,因果推理可以被概念化为一个多任务学习问题,其中一组用于治疗组和对照组的共享层在一起,而一组分别用于治疗组和对照组的特定层。
多任务学习问题中选择偏差的影响可以通过倾向-辍学正则化方案来缓解,该方案通过依赖于相关倾向评分的辍学概率对每个训练示例进行细化。如果受试者的特征在治疗组和对照组的特征空间中属于较差的重叠区域,那么退出概率更高。
贝叶斯方法也可以扩展到多任务模型下。
非参数贝叶斯方法使用具有线性共区域化内核的多任务高斯过程作为矢量值再现内核Hilbert空间的先验。贝叶斯方法允许通过逐点可信区间来计算我们对估计值的置信度,这对于实现精确医学的全部潜力至关重要。
采用基于风险的经验贝叶斯方法对多任务GP先验进行调整,从而减少选择偏差的影响,使事实结果中的经验误差和反事实结果中的不确定性最小化。
即使在每个处理中具有连续参数,也可以将多任务模型扩展到多种处理。具有共享基础层,NW中间治疗层和NW×E的剂量响应网络(DRNet)体系结构用于具有相关剂量参数s的多重治疗设置。
共享的基础层在所有样本上进行训练,而处理层仅在其各自处理类别的样本上进行训练。每个处理层进一步细分为E头层。每个头层都分配有一个剂量层,该剂量层将潜在剂量范围[at,bt]细分为等宽的E个分区。
3.7元学习方法