DL
文章平均质量分 63
DL
累了就要打游戏
LiDAR,point cloud,DL
展开
-
RandLA-Net 调通代码3:Windows 11 + Tensorflow 2.4 + Sematic3D数据集
RandLA-Net 调通代码3:Windows 11 + Tensorflow 2.4 + Sematic3D数据集原创 2024-05-23 01:23:07 · 1368 阅读 · 2 评论 -
RandLA-Net 调通代码2:Windows 11 + Tensorflow 2.4 + Semantic KITTI数据集
RandLA-Net 调通代码2:Windows 11 + Tensorflow 2.4 + Semantic KITTI数据集原创 2024-05-23 01:17:39 · 833 阅读 · 0 评论 -
RandLA-Net 调通代码1:Windows 11 + Tensorflow 2.4 + S3DIS数据集【踩坑+填坑】
TF不上进啊,学学pytorch原创 2024-01-29 17:37:53 · 1396 阅读 · 4 评论 -
PointNet - 2复现语义分割网络:Windows + PyTorch + S3DIS语义分割 + 代码
理论上讲:安装好库有数据就能跑通原创 2024-01-17 21:04:39 · 2148 阅读 · 3 评论 -
PointNet - 3【语义分割】自定义数据的模型训练
理论上讲:有数据就能跑通原创 2024-01-17 21:56:20 · 1655 阅读 · 1 评论 -
sklearn随机森林 测试 路面点云分类+python代码
验证集98%,hhhhhhhhh。特征占比有点超乎想象。原创 2023-12-06 23:35:42 · 876 阅读 · 0 评论 -
PointNet - 1复现分割网络:Windows + PyTorch + 部件分割 + 代码
理论上讲:安装好库,有数据就能跑通原创 2024-01-05 22:29:09 · 1132 阅读 · 4 评论 -
语义分割示例—FCN识别路面灌缝区域(3)训练与测试
语义分割示例—FCN识别路面灌缝区域(3)训练与测试一、参数二、模型三、数据处理四、训练五、测试笔者的训练代码总共有4个:(1)xj0paremeters.py用于存放参数;(2)xj1ModelFCN.py是FCN模型;(3)xj2ImageDataset.py用于数据处理;(4)xj3train.py用于训练。一、参数xj0paremeters.pyimport torch.cuda# 训练数据dirTrainImage = 'E:/py/dataCrack/00AA1originalNo原创 2021-07-08 14:39:23 · 504 阅读 · 0 评论 -
语义分割示例—FCN识别路面灌缝区域(2)FCN
一、FCN介绍CSDN越来越难用,见知乎吧:https://zhuanlan.zhihu.com/p/31428783二、代码源码见:https://blog.csdn.net/u014453898/article/details/92080859xj1ModelFCN.py# coding=utf-8import numpy as npimport torchimport torch.nn as nnimport torchvisionfrom torchvision.原创 2021-07-08 13:43:36 · 409 阅读 · 2 评论 -
语义分割示例—FCN识别路面灌缝区域(1)解析json与准备数据
管它用什么模型,有数据才是牛逼。一、用labelme标注灌缝区域二、json文件是这样的json文件中包含的信息包括labelme的版本、label的名称、节点坐标、label的ID、label的形状、图像路径、行列等。{ "version": "4.5.2", "flags": {}, "shapes": [ { "label": "gf", "points": [ [ 3489.847715736040原创 2021-07-08 10:32:12 · 571 阅读 · 2 评论 -
labelme 的安装使用与填坑
这些博客介绍的挺好的:数据标注软件labelme详解labelme 中遇到的问题AttributeError: module 'labelme.utils' has no attribute 'draw_label'下面是笔者曾经的填坑经验,防止忘记,以作记录。一、安装pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple labelme==4.5.2高低版本不通用;高版本报错。所以安装4.5.2版本的。二、令人头疼原创 2021-07-06 16:41:25 · 1065 阅读 · 0 评论 -
PyTorch从模型训练到C++部署调用示例—MNIST分类(4)C++调用
的cmake_minimum_required(VERSION 3.0.0 FATAL_ERROR)project(classifyMNIST) find_package(Torch REQUIRED)find_package (OpenCV 4 REQUIRED)set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}") message(STATUS "Pytorch status:")message(STATUS "原创 2021-06-25 15:11:51 · 629 阅读 · 0 评论 -
PyTorch从模型训练到C++部署调用示例—MNIST分类(3)模型转换为pt
方法# coding=utf-8import torchimport torchvisionimport warningswarnings.filterwarnings("ignore")from Net import Net# 1 模型modelPath=r'E:/py/testMNIST/testModel/model150.pth'device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')mode原创 2021-06-25 15:10:11 · 603 阅读 · 0 评论 -
PyTorch从模型训练到C++部署调用示例—MNIST分类(2)python预测
迭代# coding=utf-8import glob, osimport numpy as npimport cv2import torchimport torchvisionfrom torchvision import datasets,transformsimport warningswarnings.filterwarnings("ignore")from Net import Net# load the modeldevice=torch.device('cud原创 2021-06-25 15:08:32 · 398 阅读 · 0 评论 -
PyTorch从模型训练到C++部署调用示例—MNIST分类(1)模型与训练
import torchimport torch.nn as nnimport torch.nn.functional as Fimport torch.optim as optimfrom torch.utils.data import dataloaderimport torchvisionfrom torchvision import datasets,transformsfrom torchvision.datasets import MNISTimport matplotlib..原创 2021-06-25 15:05:54 · 683 阅读 · 1 评论 -
LibTorch部署PyTorch模型简单流程
PyTorch模型LibTorch一、配置LibTorch1.1 下载下载地址:https://pytorch.org/下图分别是GPU和CPU的下载地址,GPU版本需要根据CUDA的版本确定。箭头指向为Release版,下方是Debug版。 下载完成后,将…\libtorchCPU\lib添加至环境变量。1.2 CmakeLists.txt与测试代码(1)CmakeLists.txtcmake_minimum_required(VERSION 3.0 ...原创 2021-02-01 11:56:13 · 1760 阅读 · 0 评论 -
DL:测试鸢尾花数据回归分析
一、鸢尾花数据集鸢尾花(iris)数据集是一个经典数据集,在统计学习和机器学习领域都经常被用作示例。该数据集有3类(setosa、versicolour、virginica),每类各50个记录,共150条记录,每条记录有4项特征:花萼长度、花萼宽度、花瓣长度、花瓣宽度。下面将利用前100条记录(setosa与versicolour)与前2项特征(花萼长度与花萼宽度)进行预测分类示例。二、测试代码分享给有需要的人,代码质量勿喷。2.1 数据#coding=utf-8import n原创 2020-12-06 19:26:59 · 1293 阅读 · 1 评论 -
pytorch/tensorflow:Win + python + pycharm + CUDA 安装配置
将解压后的三个文件夹(bin、lib、include)复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0。原创 2020-06-20 15:40:08 · 1081 阅读 · 1 评论