[离散数学]图论

文章介绍了图的基本概念,包括有向图和无向图,邻接点和度数,以及握手定理。讨论了欧拉路径的特点——所有节点度数为偶数,并提到了汉密尔顿回路。此外,还涉及平面图的性质,边数与面数的关系,以及二部图和生成树的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图基本概念

点相同 边相同 $$
在这里插入图片描述

有向图 无向图

在这里插入图片描述
在这里插入图片描述

邻接点 :两个结点有一条有(无)向边相关联

邻接边:关联与同一个结点

孤立结点: 不予任何结点相邻接的结点

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

握手定理 度数=边的两倍

在这里插入图片描述
在这里插入图片描述

有向图的 出度和=入度和=边数

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

n个节点无向完全图边数 C n 2 = 1 2 n ( n − 1 ) C_n^2 = \frac 1 2 n(n-1) Cn2=21n(n1)

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

图同构

必要条件 节点数相同 边相同 度数相同节点数目相同
在这里插入图片描述
在这里插入图片描述

连通性

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

任意两个节点都是相连的

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

特殊图

欧拉环路(欧拉) 欧拉路中每个节点都是偶数度节点

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

汉密尔顿与回路

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

平面图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

一条边被两个面公用 面数次数之和等于边的2倍

在这里插入图片描述

欧拉公式 n个结点 m条边 面数r : n-m +r =2在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
m = C n 2 = 5 ∗ 4 / 2 = 10 m=C_n^2=5*4/2=10 m=Cn2=54/2=10
n = 5 n=5 n=5
由推论 m ≤ 3 n − 6 \le3n-6 3n6 得 m ≤ 9 \le9 9 相互矛盾

对偶图

在这里插入图片描述

二部图 图形的着色

在这里插入图片描述
在这里插入图片描述

点着色

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

∑ d e g ( v i ) = 2 e = 2 V − 2 \sum deg(v_i)=2e =2V -2 deg(vi)=2e=2V2
所有点的度数和等于结点数减1再乘以2
e = V − 1 e = V -1 e=V1
边数等于结点数减一 (除去根结点)

生成树 弦是不在生成树中的边
n阶m条边的连通图的生成树有 n − 1 n-1 n1条树枝和 m − n + 1 m-n+1 mn+1条弦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谢娘蓝桥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值