【运维面试】你们公司有多少台服务器?

本文探讨了面试中常被问及的企业服务器数量问题,并通过举例说明不同公司根据业务需求可能有的不同服务器配置。从中小型网站如CSDN的详细配置,到不同类型企业的实际案例,阐述了确定服务器数量要考虑的因素,包括业务类型、服务器分布和运维需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这个在面试的时候经常会被问到,尤其是你面试的4年以下工作经验的时候。

一般与这个问题相关的是:

  • 你们公司有多少服务器?
  • 你们用的技术栈是什么?
  • 你们怎么维护这么多服务器的?
  • 你在公司负责多少台?
  • 你维护的服务器上都跑什么业务?

很多小伙伴从培训机构出来,以为搭建起来nginx就完事了。 不跑业务只跑个web没啥意义。

培训机构讲的内容的确完全可以胜任工作,但大部分培训机构讲的内容只有技术,没有涉及到业务。所以会导致小伙伴进了公司一脸懵。

真正懵的不是技术,而是业务和技术的结合。

言归正传,我们说说服务器:

一个中型网站,类似于18-19年的CSDN:

在这里插入图片描述
我访问CSDN,我的访问量就是1个IP,但是我可能打开很多个链接。

我看了100篇博客=100PV
所以16Wip,算下来pv也蛮高的。

注意一个事实: 现在很多公司都有虚拟化,一台设备虚拟化出5台机器,这种算一台还是5台,不太好界定&#

Fisher准则是一种经典的线性判别分析方法,用于将高维数据降维后实现分类。在三维模式样本分类中,我们可以利用Fisher准则将三维数据降到一维,然后通过设定一个阈值来判断分类。 具体的实现步骤如下: 1.计算每个类别的均值向量协方差矩阵。 2.计算总体均值向量总体协方差矩阵。 3.计算Fisher准则中的类间离散度矩阵类内离散度矩阵。 4.计算Fisher准则中的权重向量。 5.将三维数据投影到一维,根据设定的阈值进行分类。 示例代码如下: ```python import numpy as np # 生成三维样本数据 class1 = np.random.randn(20, 3) class2 = np.random.randn(20, 3) + 5 # 计算均值向量协方差矩阵 mean1 = np.mean(class1, axis=0) mean2 = np.mean(class2, axis=0) cov1 = np.cov(class1.T) cov2 = np.cov(class2.T) # 计算总体均值向量总体协方差矩阵 mean_total = (mean1 + mean2) / 2 cov_total = (cov1 + cov2) / 2 # 计算类间离散度矩阵类内离散度矩阵 sw = cov1 + cov2 sb = np.dot((mean1 - mean2).reshape(-1, 1), (mean1 - mean2).reshape(1, -1)) # 计算权重向量 w = np.dot(np.linalg.inv(sw), (mean1 - mean2)) # 投影到一维 class1_proj = np.dot(class1, w) class2_proj = np.dot(class2, w) # 设定阈值进行分类 threshold = (np.mean(class1_proj) + np.mean(class2_proj)) / 2 result1 = class1_proj > threshold result2 = class2_proj > threshold ``` 其中,result1result2分别是class1class2的分类结果,True表示属于该类别,False表示不属于。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

互联网老辛

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值