快速理解:
- RAG 技术树:就是 RAG 技术的 “全家桶”,把从找知识到生成回答的各种技术都梳理清楚,方便大家理解和应用。
- RAFT 方法:在 RAG 的基础上给大模型 “补课”,先找知识再针对性训练,让模型在特定领域回答更准。
- DeepSeek + Faiss 搭建本地知识库检索:DeepSeek 是个能生成好回答的大模型,Faiss 是个快速找相似内容的工具,两者结合就是在本地建个知识库,快速找到相关知识再让 DeepSeek 生成回答。
- RAG 高效召回方法:就是让 RAG 更快更准地找到有用知识的办法,比如结合关键词和语义搜索,或者分步骤搜索。
- GraphRAG:把知识像地图一样连起来,找知识的时候能顺着关联找,让回答更有逻辑。
- Qwen-Agent:基于通义千问的智能助手,能自己找知识、调用工具,还能多轮聊天,解决复杂问题。
详解:
RAG 技术树
RAG(Retrieval-Augmented Generation,检索增强生成)技术树是对 RAG 相关技术的体系化梳理,涵盖从检索模块(如向量数据库选择、检索算法优化)、生成模块(大模型选择、prompt 工程)到 ** pipeline 优化 **(多轮交互、上下文管理)等多个层级的技术点,是理解 RAG 技术演进和技术选型的框架。
RAFT 方法
RAFT(Retrieval-Augmented Fine-Tuning,检索增强微调)是在 RAG 基础上融合微调的技术方法。它先通过检索获取相关知识,再基于这些知识对大模型进行微调,从而让模型在特定领域的生成效果更精准,兼具 RAG 的知识更新灵活性和微调后模型的生成专业性。
CASE:DeepSeek + Faiss 搭建本地知识库检索
- DeepSeek:是一款性能出色的大模型,具备较强的生成和理解能力,作为 RAG 中的生成端,负责基于检索到的知识生成回答。
- Faiss:是 Facebook 开发的高效向量相似度搜索工具,用于构建向量数据库。在这个案例中,它承担本地知识库的检索功能—— 将知识库中的文档转换为向量后存入 Faiss,当有查询请求时,快速检索出与查询向量最相似的文档片段,为 DeepSeek 提供生成依据,实现本地知识库的高效检索增强生成。
RAG 高效召回方法
RAG 的召回环节决定了检索知识的相关性,高效召回方法包括:
- 多模态检索:支持文本、图像等多类型数据的检索,拓宽知识来源;
- 混合检索:结合关键词检索和向量检索的优势,既保证检索的精确性(关键词),又保证语义相关性(向量);
- 检索策略优化:如分层检索(先粗筛再精筛)、基于强化学习的检索策略调整等,提升召回的效率和质量。
GraphRAG
GraphRAG 是将图结构(如知识图谱)与 RAG 结合的技术。它把知识以图的节点和边的形式组织,在检索时不仅能检索到单条知识,还能基于图的关联关系检索到知识之间的关联信息,让生成的内容更具逻辑性和关联性,适用于需要知识间强关联推理的场景(如医疗诊断、金融分析)。
Qwen-Agent
Qwen-Agent 是基于通义千问(Qwen)大模型构建的智能代理。它在 RAG 的基础上,具备自主决策、工具调用、多轮交互的能力,能根据用户需求自主检索知识、调用外部工具(如计算器、搜索引擎),并整合信息生成最终回答,实现更复杂场景下的智能交互。
765

被折叠的 条评论
为什么被折叠?



