数据标注行业创业还可以么?

    标注猿的第61篇原创    

   一个用数据视角看AI世界的标注猿   

上一篇文章得到了大家很大的反响,也有好多小伙伴留言询问是否可以从事数据标注行业的创业,一一回应比较慢,所以今天就单独写一篇文章做一个简单的分析讲解,大家可以对照自己目前的情况做一个参考。我们从三个维度去思考分析这个问题。

  • 目前的数据标注市场是怎样的?

  • 目前数据标注创业是否有机会?最好需要有哪些资源?

  • 如何在本地区开展?打造所在地区的产业环境?

一.目前的数据标注市场是怎样的?

考虑是否创业首先要对行业有一个初步的认知了解,这部分我们从四个方面进行分析:

  • 目前的市场规模

    目前行业内公开数据这部分可以参考的相对比较少一些,准确性也相对差,我们先查看做一个参考对比。例如艾瑞在2020年发布行业研究报告中提到的。

    如19年预测今年的基础数据服务市场规模应该是在50.7亿元,当然这里是包括整个AI基础数据服务市场,其中包含数据采集、标注、工具等。整体来说数据采集和标注也是占的比重是大部分的。

    这个预测的时候还没有疫情,所以从目前的情况来看个人认为是没有之前预测的市场规模要大。当然这部分我是没有数据支撑的,全凭从业的直觉。如果要预估行业规模的话,个人认为国内标注的规模应该是15-20亿的规模,采集的规模在5-10亿。

    其行业客户目前是以互联网大厂、汽车大厂等为主,这部分客户对于新进行业的供应商或者小公司来说其实是不友好的,其资质要求较高。所以这部分客户大部分都会和平台方进行合作。平台方客户目前对供应商准入相对友好,但是项目利润率控制的也相对有限,需要合作的中小型供应商要有很好的项目运营能力和人员管控能力。

    关于客户部分的分析,在之前也写过文章深入讨论过,有兴趣的小伙伴可以看一下干货!你们要的客户都在了......

  • 行业的发展趋势

    谈到数据标注行业的发展趋势,我个人认为要从两个角度去说:

    1. 市场增长的角度

      市场增量的角度,不管是存量市场还是增量市场增长都是必然的。这个可以从底层逻辑思考是为什么。

      数据标注本质是对非结构数据到结构化数据处理的过程,而在数字经济就是要实现各个行业进行数字化的过程,而我们日常生产生活中产出的绝大部分都是非结构化数据,而要对其数字化分析管理就需要对其进行非结构化到结构化处理。

      至于如何实现这一过程,就需要技术手段的加持,同时就少不了数据标注这一个环节。

    2. 是否会被垄断,从而没有进入机会的角度

      这个行业本质上算是BPO(业务流程外包)的一种,具有BPO的基本特点,纵观各个行业的BPO发展,就拿我比较熟悉的软件服务外包来说,发展了很多年到最后行业已经如此成熟了,依然没有形成一家或几家称霸行业的格局,依然有很多中小型公司活的很好。

      从这个角度来说,数据标注行业也是一样的,业务的基本属性就已经决定了其无法形成垄断。但和软件服务外包不同的是,目前数据标注行业的客户群里相对集中,竞争就会更为激烈。

      从两个角度来说,在大的方向是有机会的,但是如何落地至关重要。

  • 发展方向

    数据标注行业从发展方向上来说,有哪些好方向也是至关重要的,如果没有方向做的再多,最后都不知道自己是怎么“死”的。从我个人的角度来看目前有4个主流的发展方向:

    1. 平台方向

      个人认为目前平台方向,如果你不是大公司的就不用想了,想靠平台拿到风投目前也非常难了。无论是业务对接平台还是工具的平台目前的发展处境都非常尴尬。但是如果做到一定程度了还是需要利用技术进行加持。

    2. 基地方向

      基地形式在标注行业出现期初是由于甲方运营的直属基地用于做甲方自身项目,后面演化到政府与企业合作在产业园提供集中的场地进行项目实施,最本质的内容是可以通过集中生产的方式可以解决大量人员就业,可以拿到一些更好的政策,例如场地免费、税费政策、相关经费等等。这个方式在3、4线城市比较好实施。

    3. 职教方向

      职教方向目前也是我主要在做的方向之一,由于这个行业作为新职业,职业等级标准去年年底才出来,相关专业人才还没有系统化的培养出来,所有的培训成本都是由企业才承担,这也导致了初期运营成本很高风险也很高。

      特别是很多地区是从0开始做这个行业,还肩负着培养产业环境的大任,无形会给公司增加非常高的运营成本。这部分我们协会可以通过职教培训+证书的模式很好的帮助行业公司解决了这个问题,同时还可以给公司创收,这部分后面会用单独一篇文章讨论。

    4. 人力方向

      人力方向基本上就是驻场人力外包、离场人力外包、人力外包三种,是属于人资的一种,后续是需要劳务相关手续的。但是数据标注的人力与传统岗位人力相比其实是没有太多竞争力的。

  • 今年的数据标注市场怎么样?

    由于疫情今年上半年出现大规模反复,导致很多客户项目数据无法采集而延期,很多平台方项目也很紧张。对于行业内的公司是一个极大的挑战,一方面是项目延期,一方面是结算延期。下半年如何还要看6月份之后疫情的恢复情况。

二.目前数据标注创业是否有机会?最好需要有哪些资源?

上面我们分析了目前行业的情况,接下来我们就详细讨论一下目前来看数据标注行业创业是否还有机会,如果有机会有哪些资源是比较好的?

标注行业是否有机会答案是肯定的,是有机会的。上面我们提到了今年的行业的整体规模我个人预估在15-20亿之间。艾瑞咨询数据在2019年中小型数据服务商份额占比在47%,品牌服务商占比是30.4%,由于品牌服务商虽然发展会侵蚀一部分中小型数据服务商的市场份额,但是品牌服务商也有部分数据会放到中小型数据服务商来处理,所以对于中小服务商来说市场份额可能下降不会太多,只是利润率会下降的比较多。

由于利润率下降,如果还想做的话,有哪些资源准备是更好的呢?个人认为你如果有如下资源的话会更好。

  1. 学校资源

    一是由于是新职业,很多人对工作没有认知,招聘和留下长期从事这份工作都是有难度的,这部分都会转化到公司的运营成本里面。就相当于不仅仅要给自己公司培养人才,还要给所在城市培育新的产业。和学校合作学生的接受能力比较好,能节省很大一部分招聘和用工成本。

    二是作为新职业有对应的人才培养政策,可以通过考培、校企合作获得另外的收益。

    学校这块的运营也有相应的难点,权衡之下还是优势大于劣势。

  2. 政府资源

    政府资源这块相对容易获得的就是办公场地,由于是新职业新业态,相对容易申请到免费的办公场地,从而节省成本。另外可以申请相关的政策补贴,当然这部分相对比较难一些,但不是没有机会。

  3. 项目资源

    如果有如上两个资源的话,项目资源就相对可以放宽松一些,就会方便其做项目接入,提高在行业中的竞争力。

如果以上的资源都没有的话,个人就不建议进入这个行业进行创业了,如果真是想从事这个行业就先找个相关工作吧。

三.如何在本地区开展?打造所在地区的产业环境?

或许会有人认为我自己创业还考虑如何打造产业环境是不是就多此一举了。但由于目前大多的创业者都是2/3/4线城市的人,作为新职业目前从业相对较多的全国就那么几个当地政府大力推的城市。大部分地区是不具备好的产业环境,甚至都是0基础,这样对于公司在招聘、留人、培养的难度就大大提升。

所以可以结合校企合作、考培合作进行人员培养筛选人才,公司再进行迭代人员、项目走上正循环的发展会相对更容易一些。

以上就是对数据标注行业创业的浅析,总结来看目前的创业还是有难度的,已经不是很容易做的了,最好有一定资源,做好一定规划,仅仅是想做工作室的小伙伴,个人建议就不要尝试了。希望可以给小伙伴们做一个参考。

由于最近主要负责协会的新职业考培工作,有想做人工智能训练师职业技能等级证书考培工作的小伙伴可以私信交流。后面也会单独写一篇文章对人工智能训练师职业技能等级证书考培的问题做交流。

相关文章阅读:

  1. 干货!你们要的客户都在了......

  2. 数据标注的未来:吴恩达“未来十年AI会以数据为中心”

  3. 自动驾驶采标系列七:复杂场景语义理解-可行驶区域检测

  4. 自动驾驶采标系列六:复杂场景语义理解-交通识别检测技术

-----------------------完--------------------

公众号:AI数据标注猿

知乎:AI数据标注猿

CSDN:AI数据标注猿

微信号:MBZData

抖音号:MBZData

-----------------------完--------------------

<think>嗯,用户让我介绍一下数据标注行业的前景,我需要用中文回答。首先,我得确定用户对这个行业了解多少。可能他们听说过数据标注,但想深入了解它的发展潜力。用户可能是学生考虑职业方向,或者创业者寻找机会,也可能是投资者想评估市场。 数据标注是AI的基础,对吧?没有标注的数据,机器学习模型很难训练。所以行业前景应该和AI的发展紧密相关。首先得考虑AI的整体增长情况,比如全球AI市场的规模预测,这样能支撑数据标注的需求。比如到2030年,AI市场可能达到几千亿美元,数据标注作为上游环节,自然也会增长。 然后要分应用领域来说,自动驾驶、医疗影像、自然语言处理这些热门领域都需要大量标注数据。每个领域的具体需求不同,比如自动驾驶需要标注图像中的车辆、行人,医疗影像需要标注肿瘤位置,这些都需要专业标注员。 接下来是行业现状,国内外的公司情况。国外有Scale AI,国内有百度众包、京东众智等,说明市场已经有一定规模,但可能还处于早期阶段,竞争格局未定,有机会也有挑战。 技术变革带来的影响,比如自动标注工具的兴起,可能会减少人工需求,但暂时无法完全替代,毕竟复杂数据还需要人工校验。这可能意味着行业会向更高精度和专业化的方向发展,对标注员的要求可能提高,需要具备一定的专业知识。 挑战方面,数据隐私和安全问题越来越重要,尤其是医疗和金融数据,标注公司需要合规处理。另外,行业存在同质化竞争,利润空间可能被压缩,需要寻找差异化,比如垂直领域深耕或提供增值服务。 政策因素,中国对AI和数据要素的支持政策,比如“十四五”规划,可能促进数据标注行业的发展。数据被列为生产要素,会推动更多需求,包括标注服务。 职业机会方面,入门门槛低,适合短期就业,但长期可能需要转型,比如成为质检员或项目经理。创业的话,需要找到细分市场,避开激烈竞争,可能做医疗或农业等垂直领域。 总结的话,前景不错,但面临技术和竞争的压力,需要提升技术能力和专业服务。用户可能的深层需求是想知道是否值得进入这个行业,无论是就业还是投资。需要客观分析利弊,指出机会和挑战,让用户自己判断。可能还要考虑用户的背景,如果是学生,可以建议入门但注意技能提升;如果是创业者,强调细分市场和合规的重要性。</think>数据标注行业人工智能(AI)产业链中的重要基础环节,随着全球AI技术的快速发展,其行业前景呈现出显著的增长潜力和变革趋势。以下从多个维度进行分析: --- ### **1. 行业需求持续扩大** - **AI发展的刚需**:无论是机器学习还是深度学习,高质量标注数据是训练算法的核心燃料。例如,自动驾驶需要标注数百万张道路图像,智能客服依赖对话数据的分类标注。预计到2030年,全球AI市场规模将突破万亿美元,直接拉动数据标注需求。 - **应用场景多元化**: - **自动驾驶**:标注激光雷达点云、交通标志、行人行为。 - **医疗影像**:标注CT/MRI中的病灶区域,需医学知识辅助。 - **内容审核**:社交媒体需标注违规图片、文本,合规性要求高。 - **农业/工业AI**:如农田病虫害识别、工业质检中的缺陷标注。 --- ### **2. 行业现状与竞争格局** - **市场规模**:2023年全球数据标注市场规模约25亿美元,年复合增长率超20%,中国占比约30%,受益于AI企业密集和政策支持。 - **参与者类型**: - **专业标注公司**:如Scale AI(估值超70亿美元)、Appen,主打标准化服务。 - **科技巨头布局**:百度众包、阿里数据标注平台,整合自身AI业务需求。 - **长尾中小团队**:依托低成本人力承接简单任务,但面临利润挤压。 --- ### **3. 技术变革带来的影响** - **自动化工具兴起**:AI辅助标注(如预标注、自动分割)可减少50%以上人工耗时,但复杂场景仍需人工校验(如医学图像中的边缘案例)。 - **标注精度升级**:从基础的2D框选发展到3D立体标注、视频时序标注,对工具和人员技能要求提高。 - **合成数据补充**:部分场景通过生成对抗网络(GAN)合成标注数据,降低真实数据成本,但无法完全替代真实标注。 --- ### **4. 行业面临的挑战** - **数据隐私与合规风险**:欧盟GDPR、中国《数据安全法》等法规要求标注流程严格脱敏,医疗、金融类数据标注门槛提高。 - **人力成本与质量矛盾**:简单标注任务(如分类)单价低至0.1元/条,企业需在质量控制(如多轮质检)与成本间平衡。 - **同质化竞争**:80%企业集中在图像、文本基础标注,导致价格战,毛利率普遍低于15%。 --- ### **5. 政策与资本驱动** - **中国政策利好**:国家“数据要素化”战略推动数据交易市场,北京、上海设立数据交易所,标注数据可能成为可交易资产。 - **资本关注**:2022年中国数据标注领域融资超10笔,早期项目如曼孚科技、龙猫数据获千万级投资,资本倾向技术型公司。 --- ### **6. 就业与创业机会** - **就业层面**: - **基层标注员**:适合短期过渡,但可替代性强,月薪约3-6k。 - **进阶岗位**:质检培训师、项目经理,需熟悉AI模型需求,月薪可达8-15k。 - **创业方向**: - **垂直领域标注**:如遥感图像、病理切片,需行业Know-how。 - **工具链开发**:标注平台SaaS化,集成项目管理、质量分析功能。 - **数据服务整合**:提供“标注+清洗+增强”一站式解决方案。 --- ### **总结与展望** - **短期(1-3年)**:行业规模持续增长,但低端标注面临自动化替代,人力成本上涨倒逼企业技术升级。 - **长期(5-10年)**:标注行业可能演变为“AI训练服务商”,结合合成数据、主动学习等技术,提供全流程数据解决方案。 - **个人建议**:入行者需向专业化(如医疗标注认证)、管理化(团队/项目管理)转型;企业应聚焦细分场景,或通过自研工具构建壁垒。 数据标注作为“AI背后的产业”,其前景与AI应用落地深度绑定,虽面临技术替代风险,但在可预见的十年内仍是刚需市场,关键在于如何提升价值而非依赖人力堆砌。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI数据标注猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值