机器视觉检测算法中的漏检和过杀以及阈值

在机器视觉检测算法中:

 

• 漏检:是指算法未能检测到实际存在的目标缺陷,将不良品判定为正常品。漏检的原因可能包括设定了不合理的阈值、未考虑到缺陷的变化,或者受光线、雾霾等外部环境因素的影响。

 

• 过杀:是指错误地识别为缺陷,将正常品判定为不良品。出现过杀的原因可能也是设定了不合理的阈值,或者是设备的运行状况不佳,如光源不均匀或摄像头调整不当。

 

• 阈值:是机器视觉检测算法中的一个重要参数,用于区分正常与异常、合格与不合格的界限。全局阈值是在设定的阈值范围内将灰度图像处理成白色像素;自动阈值则是使用如OTSU算法计算最佳阈值;局部阈值则是根据ROI(感兴趣区域)进行阈值分割。阈值的设定直接影响漏检和过杀的发生率,因此需要根据实际应用场景和需求进行合理调整。

 

为了优化机器视觉检测算法的性能,需要综合考虑漏检、过杀以及阈值等多个因素,通过调整算法参数、改进算法设计、增强数据多样性等措施,不断提高检测的准确性和稳定性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值