在自动化设备机器视觉领域中,OK与NG、漏失与过杀是常见的评估指标和可能遇到的问题,以下是对这些概念的解释和说明:
一、OK与NG
• OK:在机器视觉中,OK通常表示被检测物体或区域符合预设的质量标准或要求,即系统判断其为合格品。
• NG:与OK相反,NG表示被检测物体或区域不符合预设的质量标准或要求,系统判断其为不合格品。
二、漏失与过杀
• 漏失(漏检):0%
• 定义:指机器视觉系统未能检测到实际存在的缺陷或问题,将不良品误判为正常品。
• 影响:漏失是影响产品质量稳定性的重要因素之一,可能导致后续生产流程中的质量问题或客户投诉。
• 原因:可能包括设定了过高的缺陷阈值、图像获取设备性能不佳(如相机分辨率低、照明不足等)、算法局限性等。
• 过杀:6%
• 定义:指机器视觉系统过于敏感,将正常品误判为不良品。
• 影响:过杀会导致生产效率下降和成本增加,因为正常品被错误地剔除或标记为不合格品。
• 原因:可能包括设定了过低的缺陷阈值、图像干扰(如阴影、反光等)、算法泛化能力不足等。
三、应对措施
为了减少漏失和过杀问题,可以采取以下措施:
• 优化图像采集设备:增强照明效果,调整相机参数(如曝光时间、白平衡等),确保图像输入清晰稳定。
• 改进和优化算法:使用更先进的图像处理和机器学习算法,提高算法对复杂和特殊模式的处理能力,同时增强算法的泛化能力和鲁棒性。
• 调整检测参数:根据实际应用场景和需求,合理设定缺陷检测的阈值,避免过高或过低的阈值导致漏检或过杀。
• 增加训练数据多样性:通过扩增数据集,特别是增加样本少的类别的数据,以及使用不同环境、条件下的图像数据来训练模型,提高模型对不同情况的适应能力。
• 定期验证和调整系统:设定一系列标准化测试用例,对系统进行综合性能评估,包括准确度、重复性、实时性等指标。根据测试结果,对系统参数和算法进行进一步调整和优化。
综上所述,OK与NG是机器视觉系统对物体或区域质量判断的结果,而漏失与过杀则是系统判断过程中可能出现的问题。 通过采取相应的应对措施,可以有效地减少这些问题,提高机器视觉系统的性能和稳定性。