【数学建模】使用拉格朗日、分段线性、三次样条三种插值并通过梯形公式、辛普森公式计算数值积分,计算小浪底水库的排沙量

该博客介绍了如何使用MATLAB进行拉格朗日、分段线性和三次样条插值,结合梯形和辛普森公式计算数值积分,以估算小浪底水库在2004年调水调沙试验期间的排沙量。实验目标包括掌握插值方法、数值积分计算和解决实际问题。博客详细阐述了算法原理,并提供了代码和实验结果分析。
摘要由CSDN通过智能技术生成

实验目的

1. 掌握用MATLAB计算拉格朗日、分段线性、三次样条三种插值的方法,改变节点的数目,对三种插值结果进行初步分析。

2. 掌握用MATLAB及梯形公式、辛普森公式计算数值积分。

3. 用插值和数值积分解决实际问题。

实验内容(问题介绍)

2004年6-7月黄河进行了第三次调水调沙试验,特别是首次由小浪底、三门峡和万家寨三大水库联合调度,采用接力式防洪预泄放水,形成人造洪峰进行调沙试验获得成功。整个试验期为20多天,小浪底从6月19日开始预泄放水,直到7月13日恢复正常供水结束。小浪底水利工程按设计拦沙量为75.5亿立方米,在这之前,小浪底共积泥沙达14.15亿吨。这次调水调沙试验一个重要目的就是由小浪底上游的三门峡和万家寨水库泄洪,在小浪底形成人造洪峰,冲刷小浪底库区沉积的泥沙,在小浪底水库开闸泄洪以后,从6月27日开始三门峡水库和万家寨水库陆续开闸放水,人造洪峰于29日先后到达小浪底,7月3日达到最大流量2700m/s,使小浪底水库的排沙量也不断地增加。

表5.14是小浪底观测站6月29日—7月10日检测到的试验数据

现在,根据试验数据建立数学模型研究下面的问题:

(1)给出估计任意时刻的排沙量及总排沙量的方法。

(2)确定排沙量与水流量的关系。

算法介绍

在插值点的附近选取若干合适的节点,构造一个简单的插值函数y = p(x) ,要求构造的插值函数穿过选取的节点。在所选数据区间用插值函数p(x) 的值作为原来函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值