如何检测和处理轮廓线 squares demo

转载 2012年03月29日 17:05:59
/*
在程序里找寻矩形
*/
#ifdef _CH_
#pragma package <opencv>
#endif

#ifndef _EiC
#include "cv.h"
#include "highgui.h"
#include <stdio.h>
#include <math.h>
#include <string.h>
#endif

int thresh = 50;
IplImage* img = 0;
IplImage* img0 = 0;
CvMemStorage* storage = 0;
CvPoint pt[4];
const char* wndname = "Square Detection Demo";

// helper function:
// finds a cosine of angle between vectors
// from pt0->pt1 and from pt0->pt2 
double angle( CvPoint* pt1, CvPoint* pt2, CvPoint* pt0 )
{
    double dx1 = pt1->x - pt0->x;
    double dy1 = pt1->y - pt0->y;
    double dx2 = pt2->x - pt0->x;
    double dy2 = pt2->y - pt0->y;
    return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
}

// returns sequence of squares detected on the image.
// the sequence is stored in the specified memory storage
CvSeq* findSquares4( IplImage* img, CvMemStorage* storage )
{
    CvSeq* contours;
    int i, c, l, N = 11;
    CvSize sz = cvSize( img->width & -2, img->height & -2 );
    IplImage* timg = cvCloneImage( img ); // make a copy of input image
    IplImage* gray = cvCreateImage( sz, 8, 1 ); 
    IplImage* pyr = cvCreateImage( cvSize(sz.width/2, sz.height/2), 8, 3 );
    IplImage* tgray;
    CvSeq* result;
    double s, t;
    // create empty sequence that will contain points -
    // 4 points per square (the square's vertices)
    CvSeq* squares = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvPoint), storage );
    
    // select the maximum ROI in the image
    // with the width and height divisible by 2
    cvSetImageROI( timg, cvRect( 0, 0, sz.width, sz.height ));
    
    // down-scale and upscale the image to filter out the noise
    cvPyrDown( timg, pyr, 7 );
    cvPyrUp( pyr, timg, 7 );
    tgray = cvCreateImage( sz, 8, 1 );
    
    // find squares in every color plane of the image
    for( c = 0; c < 3; c++ )
    {
        // extract the c-th color plane
        cvSetImageCOI( timg, c+1 );
        cvCopy( timg, tgray, 0 );
        
        // try several threshold levels
        for( l = 0; l < N; l++ )
        {
            // hack: use Canny instead of zero threshold level.
            // Canny helps to catch squares with gradient shading   
            if( l == 0 )
            {
                // apply Canny. Take the upper threshold from slider
                // and set the lower to 0 (which forces edges merging) 
                cvCanny( tgray, gray, 0, thresh, 5 );
                // dilate canny output to remove potential
                // holes between edge segments 
                cvDilate( gray, gray, 0, 1 );
            }
            else
            {
                // apply threshold if l!=0:
                //     tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
                cvThreshold( tgray, gray, (l+1)*255/N, 255, CV_THRESH_BINARY );
            }
            
            // find contours and store them all as a list
            cvFindContours( gray, storage, &contours, sizeof(CvContour),
                CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0) );
            
            // test each contour
            while( contours )
            {
                // approximate contour with accuracy proportional
                // to the contour perimeter
                result = cvApproxPoly( contours, sizeof(CvContour), storage,
                    CV_POLY_APPROX_DP, cvContourPerimeter(contours)*0.02, 0 );
                // square contours should have 4 vertices after approximation
                // relatively large area (to filter out noisy contours)
                // and be convex.
                // Note: absolute value of an area is used because
                // area may be positive or negative - in accordance with the
                // contour orientation
                if( result->total == 4 &&
                    fabs(cvContourArea(result,CV_WHOLE_SEQ)) > 1000 &&
                    cvCheckContourConvexity(result) )
                {
                    s = 0;
                    
                    for( i = 0; i < 5; i++ )
                    {
                        // find minimum angle between joint
                        // edges (maximum of cosine)
                        if( i >= 2 )
                        {
                            t = fabs(angle(
                            (CvPoint*)cvGetSeqElem( result, i ),
                            (CvPoint*)cvGetSeqElem( result, i-2 ),
                            (CvPoint*)cvGetSeqElem( result, i-1 )));
                            s = s > t ? s : t;
                        }
                    }
                    
                    // if cosines of all angles are small
                    // (all angles are ~90 degree) then write quandrange
                    // vertices to resultant sequence 
                    if( s < 0.3 )
                        for( i = 0; i < 4; i++ )
                            cvSeqPush( squares,
                                (CvPoint*)cvGetSeqElem( result, i ));
                }
                
                // take the next contour
                contours = contours->h_next;
            }
        }
    }
    
    // release all the temporary images
    cvReleaseImage( &gray );
    cvReleaseImage( &pyr );
    cvReleaseImage( &tgray );
    cvReleaseImage( &timg );
    
    return squares;
}

// the function draws all the squares in the image
void drawSquares( IplImage* img, CvSeq* squares )
{
    CvSeqReader reader;
    IplImage* cpy = cvCloneImage( img );
    int i;
    
    // initialize reader of the sequence
    cvStartReadSeq( squares, &reader, 0 );
    
    // read 4 sequence elements at a time (all vertices of a square)
    for( i = 0; i < squares->total; i += 4 )
    {
        CvPoint* rect = pt;
        int count = 4;
        
        // read 4 vertices
        memcpy( pt, reader.ptr, squares->elem_size );
        CV_NEXT_SEQ_ELEM( squares->elem_size, reader );
        memcpy( pt + 1, reader.ptr, squares->elem_size );
        CV_NEXT_SEQ_ELEM( squares->elem_size, reader );
        memcpy( pt + 2, reader.ptr, squares->elem_size );
        CV_NEXT_SEQ_ELEM( squares->elem_size, reader );
        memcpy( pt + 3, reader.ptr, squares->elem_size );
        CV_NEXT_SEQ_ELEM( squares->elem_size, reader );
        
        // draw the square as a closed polyline 
        cvPolyLine( cpy, &rect, &count, 1, 1, CV_RGB(0,255,0), 3, CV_AA, 0 );
    }
    
    // show the resultant image
    cvShowImage( wndname, cpy );
    cvReleaseImage( &cpy );
}

void on_trackbar( int a )
{
    if( img )
        drawSquares( img, findSquares4( img, storage ) );
}

char* names[] = { "pic1.png", "pic2.png", "pic3.png",
                  "pic4.png", "pic5.png", "pic6.png", 0 };

int main(int argc, char** argv)
{
    int i, c;
    // create memory storage that will contain all the dynamic data
    storage = cvCreateMemStorage(0);

    for( i = 0; names[i] != 0; i++ )
    {
        // load i-th image
        img0 = cvLoadImage( names[i], 1 );
        if( !img0 )
        {
            printf("Couldn't load %s\n", names[i] );
            continue;
        }
        img = cvCloneImage( img0 );
        
        // create window and a trackbar (slider) with parent "image" and set callback
        // (the slider regulates upper threshold, passed to Canny edge detector) 
        cvNamedWindow( wndname, 1 );

		// int cvCreateTrackbar( const char* trackbar_name, const char* window_name,
		//int* value, int count, CvTrackbarCallback on_change );
		//trackbar_name
		//被创建的trackbar名字。 
		//window_name
		//窗口名字,这个窗口将为被创建trackbar的父对象。 
		//value 
		//整数指针,它的值将反映滑块的位置。这个变量指定创建时的滑块位置。 
		//count 
		//滑块位置的最大值。最小值一直是0。 
		//on_change 
		//每次滑块位置被改变的时候,被调用函数的指针。这个函数应该被声明为void Foo(int); 
		//如果没有回调函数,这个值可以设为NULL。 
		//函数cvCreateTrackbar用指定的名字和范围来创建trackbar(滑块或者范围控制),
		//指定与trackbar位置同步的变量,并且指定当trackbar位置被改变的时候调用的回调函数。
		//被创建的trackbar显示在指定窗口的顶端。 
        cvCreateTrackbar( "canny thresh", wndname, &thresh, 1000, on_trackbar );
        
        // force the image processing
        on_trackbar(0);
        // wait for key.
        // Also the function cvWaitKey takes care of event processing
        c = cvWaitKey(0);
        // release both images
        cvReleaseImage( &img );
        cvReleaseImage( &img0 );
        // clear memory storage - reset free space position
        cvClearMemStorage( storage );
        if( c == 27 )
            break;
    }
    
    cvDestroyWindow( wndname );  
    return 0;
}

#ifdef _EiC
main(1,"squares.c");
#endif

Mondriaan's Dream POJ - 2411 (状压dp,轮廓线dp)

DescriptionSquares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, aft...
  • elbadaernu
  • elbadaernu
  • 2017年09月28日 00:48
  • 132

平行轮廓线预处理的一些算法

说明:图比较难处理,就没有粘过来4.3.1 轮廓线的预处理对于平行轮廓线,在建模之前需要判断轮廓线上顶点的凸凹性和顶点的走向。这些判断和计算是计算机图形学、模式识别、CAD等领域经常碰到的问题(周培德...
  • yqxx
  • yqxx
  • 2006年02月24日 15:28
  • 2569

css去除轮廓线

将button 添加border-radius:xx;后 变成圆形 但当点击的时候依然会有一个边框线 添加属性 outline:none; 即可解决...
  • Islandww
  • Islandww
  • 2017年03月31日 13:13
  • 488

【NPR】漫谈轮廓线的渲染

写在前面 好久没写文章。最近在看《Real Time Rendering, third edition》这本书,看到了NPR这一章就想顺便记录下一些常见的轮廓线渲染的方法。在非真实感渲染中,对轮廓线...
  • candycat1992
  • candycat1992
  • 2015年05月10日 12:28
  • 13568

Python检测和处理异常

检测和处理异常 异常可以通过Try 语句来检测。任何在try语句里的代码都会被监测,检查有无异常发生。 try语句有两种形式:try-except 和try-finally。 这两个语句是互斥的...
  • NV_li_JCF
  • NV_li_JCF
  • 2017年07月24日 19:50
  • 215

如何检测和处理内存泄漏

四. 如何检测和处理内存泄漏如何查找引起内存泄漏的原因一般有两个步骤:第一是安排有经验的编程人员对代码进行走查和分析,找出内存泄漏发生的位置;第二是使用专门的内存泄漏测试工具进行测试. 第一个步骤:在...
  • flying99
  • flying99
  • 2007年11月23日 10:58
  • 665

如何编程读取墙的轮廓线

解决思路: Revit API没有直接提供接口读取墙的轮廓线。读取这个数据可以通过读取墙的几何信息(Geometry属性)获得代表这个墙的Solid,然后从这个solid中遍历solid中的所以后面...
  • JoeXiongjin
  • JoeXiongjin
  • 2012年02月20日 11:05
  • 6185

图像处理之图像的边缘、轮廓检测

图像的边缘、轮廓检测在人类视觉和计算机视觉中均起着重要的作用。人类能够仅凭一张背景剪影或一张草图就能识别出物体的类型和姿态。OpenCV提供了许多边缘检测l滤波函数,包括Laplacian( )、So...
  • llh_1178
  • llh_1178
  • 2017年06月15日 10:20
  • 2398

数字图像处理实验三 图像轮廓提取与边缘检测

实验三   图像轮廓提取与边缘检测 一、实验目的: 理解并掌握对二值图像进行轮廓提取的相关算法(比如,掏空内部点法),以及用于图像边缘检测和提取的典型微分算子(梯度算子和拉普拉斯算子)。 ...
  • The_star_is_at
  • The_star_is_at
  • 2017年04月19日 19:54
  • 3484

POJ2411 轮廓线动态规划典型例题

Poj2411 Mondriaan's Dream 给出一个n*m的矩形,然后用1*2大小的多米若骨牌去填充n*m的这个矩形,问有多少种填充方法。 分析:典型的轮廓线动态规划题目。详见刘汝佳新书:算法...
  • u013480600
  • u013480600
  • 2014年02月19日 19:31
  • 3733
收藏助手
不良信息举报
您举报文章:如何检测和处理轮廓线 squares demo
举报原因:
原因补充:

(最多只允许输入30个字)