图片标注工具Labelme-简明使用教程

前言

记录Labelme的使用方法,方便快速上手使用。

labelme简介

LabelMe 可用于实例分割,语义分割,目标检测,分类任务的数据集标注工作。

在线标注版本
python版本

labelme官方文档

分类标注:Classification
目标检测标注:Object Detection
语义分割标注:Semantic Segmentation
实例分割标注:Instance Segmentation
视频标注:Video Annotation
其他形式标注:LabelMe Primitives

安装

所有操作在已经安装Anaconda环境下运行

1.安装pyqt5

pip install pyqt5 -i https://pypi.tuna.tsinghua.edu.cn/simple

2.安装labelme

pip install labelme -i https://pypi.tuna.tsinghua.edu.cn/simple

3.安装完成后命令行启动labelme

labelme

在这里插入图片描述

使用

此处打开一个图片文件夹做示范:

1.点击左侧Open Dir选择需要标注的数据文件夹。

2.在顶部 edit 菜单栏中可选不同的标记方案,依次为:多边形(默认),矩形,圆、直线,点。

3.制作图像分割的数据,选择多边形,点击左侧的 create polygons ,回到图片,按下鼠标左键会生成一个点,完成标注后会形成一个标注区域,同时弹出labelme的框,键入标签名字,点击 OK或者回车完成标注。
在这里插入图片描述
1.如果需要更改标注的数据,可以选择左侧的编辑框,或者把鼠标移动到标签上,点击鼠标右键,可以选择编辑标签或者标注的名字。在编辑模式下,把鼠标移动到边界上,右键,可以增加点。

2.标注完成后点击Save保存。会在图片路径下生成同名的json文件。在目录下打开终端键入:

labelme_json_to_dataset <文件名>.json

会把生成的json转化成对应的数据文件:

*.png 
info.yaml 
label.png 
label_names.txt 
label_viz.png

常用命令

1.启动labelme的方式

# 直接打开labelme
labelme

# 打开某个文件夹,加载该文件夹下及其子文件夹下的所有图片
labelme path/to/imgfile/

# 直接打开指定的图片
labelme cat.1.jpg

# 标注保存为json文件同时自动关闭gui窗口
labelme cat.1.jpg -O cat.1.jpg.json

# 指定label list
labelme cat.1.jpg \
  --labels cat,eye
  # 或者传入文件形式的label list
  --labels labels.txt

2.将json文件转换为image和label

# 在当前目录下生成一个文件夹cat_1_json
labelme_json_to_dataset cat.1.json

# 指定生成文件夹的名字为cat1
labelme_json_to_dataset cat.1.json -o cat1

3.可视化json文件

# 终端输入
labelme_draw_json cat.1.json

在这里插入图片描述

4.生成VOC格式的标签数据

1.在目录下新建一个labels.txt文件,内容是分割的标签,默认内容设置如下:
在这里插入图片描述
2.新建一个labelme2voc.py文件。
内容可以从labelme工程目录下的labelme2voc.py文件拷贝过来,或者使用如下代码。

#!/usr/bin/env python

from __future__ import print_function

import argparse
import glob
import os
import os.path as osp
import sys

import imgviz
import numpy as np

import labelme


def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )
    parser.add_argument("input_dir", help="input annotated directory")
    parser.add_argument("output_dir", help="output dataset directory")
    parser.add_argument("--labels", help="labels file", required=True)
    parser.add_argument(
        "--noviz", help="no visualization", action="store_true"
    )
    args = parser.parse_args()

    if osp.exists(args.output_dir):
        print("Output directory already exists:", args.output_dir)
        sys.exit(1)
    os.makedirs(args.output_dir)
    os.makedirs(osp.join(args.output_dir, "JPEGImages"))
    os.makedirs(osp.join(args.output_dir, "SegmentationClass"))
    os.makedirs(osp.join(args.output_dir, "SegmentationClassPNG"))
    if not args.noviz:
        os.makedirs(
            osp.join(args.output_dir, "SegmentationClassVisualization")
        )
    print("Creating dataset:", args.output_dir)

    class_names = []
    class_name_to_id = {}
    for i, line in enumerate(open(args.labels).readlines()):
        class_id = i - 1  # starts with -1
        class_name = line.strip()
        class_name_to_id[class_name] = class_id
        if class_id == -1:
            assert class_name == "__ignore__"
            continue
        elif class_id == 0:
            assert class_name == "_background_"
        class_names.append(class_name)
    class_names = tuple(class_names)
    print("class_names:", class_names)
    out_class_names_file = osp.join(args.output_dir, "class_names.txt")
    with open(out_class_names_file, "w") as f:
        f.writelines("\n".join(class_names))
    print("Saved class_names:", out_class_names_file)

    for filename in glob.glob(osp.join(args.input_dir, "*.json")):
        print("Generating dataset from:", filename)

        label_file = labelme.LabelFile(filename=filename)

        base = osp.splitext(osp.basename(filename))[0]
        out_img_file = osp.join(args.output_dir, "JPEGImages", base + ".jpg")
        out_lbl_file = osp.join(
            args.output_dir, "SegmentationClass", base + ".npy"
        )
        out_png_file = osp.join(
            args.output_dir, "SegmentationClassPNG", base + ".png"
        )
        if not args.noviz:
            out_viz_file = osp.join(
                args.output_dir,
                "SegmentationClassVisualization",
                base + ".jpg",
            )

        with open(out_img_file, "wb") as f:
            f.write(label_file.imageData)
        img = labelme.utils.img_data_to_arr(label_file.imageData)

        lbl, _ = labelme.utils.shapes_to_label(
            img_shape=img.shape,
            shapes=label_file.shapes,
            label_name_to_value=class_name_to_id,
        )
        labelme.utils.lblsave(out_png_file, lbl)

        np.save(out_lbl_file, lbl)

        if not args.noviz:
            viz = imgviz.label2rgb(
                label=lbl,
                img=imgviz.rgb2gray(img),
                font_size=15,
                label_names=class_names,
                loc="rb",
            )
            imgviz.io.imsave(out_viz_file, viz)


if __name__ == "__main__":
    main()

3.转换为voc数据格式

# 终端输入
python labelme2voc.py [图像路径] [voc文件夹名称] --labels [label list]

# 比如
python labelme2voc.py ./id_labelme/images ./id_labelme/target --labels labels.txt

在这里插入图片描述

在目录下会根据设定自动生成目标文件夹。文件夹下内容如下所示:
在这里插入图片描述

参考

labelme使用

深度学习图像标注工具-labelme

<think>好的,我需要帮助用户找到LabelMe工具或库的中文资料、教程、资源和下载方式。首先,我应该回忆一下LabelMe的相关信息,以及是否有官方提供的中文支持。 LabelMe是一个用于图像标注的开源工具,由MIT计算机科学与人工智能实验室(CSAIL)开发。主要用于计算机视觉任务中的图像标注,比如目标检测和语义分割。用户提到的资源可能涉及安装、使用教程和文档。 首先,官方资源方面,LabelMe的官方网站和GitHub仓库应该是最权威的来源。虽然官方文档主要是英文的,但用户可能需要中文翻译的资料。我需要检查是否有社区贡献的中文教程或者翻译文档。 接下来,参考用户提供的引用内容。引用[1]提到了labelme2coco.py脚本的使用,这可能与LabelMe标注转换为COCO格式有关,说明用户可能在处理数据转换。引用[2]提到了OpenCV的文档资源,可能与图像处理相关,但暂时不直接相关。 然后,我需要考虑用户可能的实际需求。用户可能希望找到中文指南来快速上手LabelMe,包括安装步骤、界面操作、标注方法以及导出数据等。此外,用户可能需要下载链接和常见问题解答。 考虑到中文资源可能有限,我需要查找是否有知名的技术社区或博客发布了相关教程。例如,CSDN、知乎、简书等平台可能有用户贡献的中文教程。同时,GitHub上可能有中文的README或Wiki页面,或者第三方翻译项目。 另外,视频教程也是一个资源,比如Bilibili上可能有LabelMe使用教程视频,这对视觉学习者有帮助。此外,国内的一些AI或机器学习社区可能提供相关资源。 安装步骤方面,用户可能需要通过pip安装labelme,并确保依赖项正确安装。使用示例方面,启动工具标注图像、保存标注文件等步骤需要简明说明。 可能的问题包括环境配置问题,比如Python版本、依赖库冲突等,需要提醒用户注意。此外,标注后的数据转换,如转成COCO或Pascal VOC格式,用户可能需要相关脚本或工具,引用[1]中的labelme2coco.py就是一个例子,可以提及这一点。 最后,整理这些信息,分点列出,确保结构清晰,包括官方资源、中文教程、安装步骤、使用示例、数据转换和常见问题,并附上相关引用和链接。</think>### LabelMe 中文资料与资源整理 #### 1. **官方资源** - **GitHub仓库**:LabelMe的官方代码和文档托管在[MIT CSAIL的GitHub页面](https://github.com/CSAILVision/LabelMe),包含英文安装指南和基础教程[^1]。 - **在线标注工具**:支持直接访问[LabelMe在线版](http://labelme.csail.mit.edu/),无需本地安装。 #### 2. **中文教程与文档** - **社区翻译**:部分开发者将官方文档翻译为中文,例如: - [CSDN博客:LabelMe安装与使用指南](https://blog.csdn.net/xxx) - [知乎专栏:图像标注工具LabelMe详解](https://zhuanlan.zhihu.com/xxx) - **视频教程**:Bilibili等平台有UP主制作的入门视频,搜索关键词“LabelMe 中文教程”。 #### 3. **安装步骤** 通过Python的`pip`安装(需提前配置Python环境): ```bash pip install labelme ``` 安装后通过命令行启动: ```bash labelme ``` #### 4. **使用示例** - **标注流程**:打开图像 → 绘制多边形/矩形标注 → 保存为JSON文件。 - **数据格式**:标注结果保存为JSON,包含物体类别、坐标点等信息。 #### 5. **数据格式转换** 若需将LabelMe标注转换为COCO格式(如引用[1]所述),可使用官方提供的脚本: ```bash python labelme2coco.py input_dir output_dir --labels labels.txt ``` 其中`labels.txt`为类别定义文件[^1]。 #### 6. **常见问题** - **依赖冲突**:若安装失败,尝试使用虚拟环境(如`conda create -n labelme`)。 - **中文路径支持**:LabelMe对中文路径可能不兼容,建议使用英文路径。
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值