作者: 青云,qq307942727
根据几何光学,理想透镜的程序模型如下图所示。物点P所成的像点P2可以用两条光线来求得。其中一条经物方焦点F到透镜P1点,然后光线平行于光轴方向沿着像空间转播。另一条经过透镜中心传播。这两条光线的焦点相交于P2点。如图1所示。
图1 理想透镜几何光学成像模型
事实上,P1与P2具有相同的2维坐标,唯一不同的是沿着光轴方向的坐标不同。因此,可以把成像面平移到透镜上,即连接物点与物方焦点的射线与透镜相交的点即为像点。于是成像模型可以简化成图2.
图2 简化的成像模型
图2中,P1与P分布在光轴的两侧,用数学表达时,物点坐标P与像点坐标P1符号相反。且成的像是反像。为了更清晰地分析,对图2模型进一步简化,让成像面绕物方焦点F旋转180度,得到图3右边的虚拟成像面。需要特别注意的是,图3右图中的O不是透镜的光心,而是投影的物方焦点F!即图3左图中的F。
图3 进一步简化的成像模型
有了图3的简化模型,就可以讨论相机拍摄全景图时如何旋转了。相机旋转是绕在O点(相机的镜头的物方焦点!)旋转的,否则远近不同的物体会出现不能同时对准的现象。下图中,左边的不是绕在物方焦点旋转拍摄的全景图(部分),右边是绕在物方焦点拍摄的全景图(部分)。左图中“这”字处出现的断裂,而右图中过度平缓。手机有拍摄全景图的功能,这就告诉摄影者,拍全景时不要让手机绕着人转,而是绕着物方焦点转!如果找不到物方焦点,绕着镜头转也是可以的,因为镜头离物方焦点很近。在拍摄近景全景图时,这尤为重要。
图4 不绕物方焦点与绕物方焦点旋转拍摄的全景图(部分)的差异
柱面投影示意图如下所示。原图上的X坐标将投影到X'。根据几何关系,可以推得原图上(x,y)坐标投影到(x‘,y’)的公式为:
上式中,f为:</