一张图搞定多变量微积分

本文深入介绍了多变量微积分的关键概念,包括梯度、方向导数、曲率、散度和旋度,以及它们在最优化问题中的应用。通过思维导图和实例,阐述了如何利用这些概念解决实际问题,特别是在机器学习中的作用。文章还探讨了切平面、局部线性化和二次近似等近似方法,以及条件最优化问题的求解策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Overview

此篇文章包含多变量微积分一些重点概念和一些重要应用。通过一些已有的结论和公式来解决现实中的问题。通过多变量微积分的学习让我对机器学习的一些算法了解的更加透彻。我并没有阐述公式的原理和其推导过程,但是,我会在相应主题的下面给你一些解释其原理的链接,如果想了解的话可以看看。

核心内容

我自己画了一张思维导图,我会按照图上的标号依次阐述其具体内容。图片如下:

多变量微积分

(一) 梯度

函数f的梯度表示为 f ,它是f所有偏微分的集合组成一个向量。例如: f(x,y)=x2xy ,它的梯度是 f(x,y)=x(x2xy)y(x2xy)=[2xyx]

对于函数f,在输入点 (x0,y0) 求得的梯度其方向为最快上升的方向(steepest ascent)。其具体原理:https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/gradient-and-directional-derivatives/a/the-gradient

(二) 方向导数

方向导数告诉你多变量函数 f 随着在给定向量 v⃗  的方向的输入下的变化率。

在给定 v⃗  的前提下,我们可以用 fv⃗  来计算方向导数。

当方向导数用来计算斜率时,要将 v⃗  单位化。

其实我们可以认为 fv⃗  是求导的通式。比如 f 为三维输入空间和一个输出:我们想求x方向的偏导,那么 fv⃗ =fxfyfz100=fx

如果我把单位 v⃗  换成 v⃗ 2 ,则上面导数的结果为 2fx<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值