量化回测框架Backtrader【2】-数据导入(附:Tushare介绍)

目录

一,通用参数

二,通用CSV格式数据导入

三,panda数据导入

四,导入扩展数据类别


量化回测的第一步就是导入数据,Backtrader中称这个为data feeds,支持多种数据导入方式

  • 通用CSV格式
  • panda数据
  • Backtrader CSV Backtrader 为测试自创的格式,
  • 一系列的第三方数据包括(yahoo等)

由于后面两种方式暂时还不会用到,所以只介绍前面两种方式。

一,通用参数

由于所有的数据导入类都派生于同一个基类,所以所有的数据导入类都支持通用参数。

  • dataname (默认值: 无) 必须提供
    含义随数据类型(文件位置,代码,…)而异。
  • name (默认值: ‘’)
    用于绘图。 如果未指定,则会从数据名派生(例如:文件路径的最后一部分)
  • fromdate (默认值: 最早的时间)
    Python datetime对象,忽略最早时间之前的任何时间
  • todate (默认值: 最晚的时间)
    Python datetime对象,忽略最晚时间之后的任何时间
  • timeframe (默认值: TimeFrame.Days)
    时间间隔,可选值: TicksSecondsMinutesDaysWeeksMonths and Years
  • compression (默认值: 1)
    每个bar里面实际包含的bar数量(bar是时间的颗粒度,相当于k线图上的一个柱子),仅在数据重采样/回放中有效。
  • sessionstart (默认值: None)
    指示数据的会话开始时间。 可能被类用于诸如重采样之类的目的
  • sessionend (默认值: None)
    指示数据的会话结束时间。 可能被类用于诸如重采样之类的目的

二,通用CSV格式数据导入

函数名:GenericCSVData

独有参数:

  • dataname 数据文件名
  • datetime (默认值: 0) 日期数据所在列
  • time (默认值: -1) 时间数据所在列(-1代表没有)
  • open (默认值: 1) , high (默认值: 2), low (默认值: 3), close (默认值: 4), volume (默认值: 5), openinterest (默认值: 6)
    分别表示开盘,最高价,最低价,收盘价,交易量,持仓量所在列(-1代表没有)
  • nullvalue (默认值: float(‘NaN’))
    用来替换缺失值的值
  • dtformat (默认值: %Y-%m-%d %H:%M:%S)
    日期格式
  • tmformat (默认值: %H:%M:%S)
    时间格式

再举例子前先介绍一

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值