OFDM--IDFT实现

这篇《移动通信》课程报告深入探讨了OFDM(正交频分复用)技术,强调了其正交性在时域和频域的表现。报告详细介绍了用IDFT实现OFDM的过程,阐述了IDFT在减少硬件需求和处理复杂性方面的优势。同时,报告提到了OFDM在4G应用的广泛性和未来在宽带接入系统中的前景,但也指出了频偏同步和MC-CDMA上行链路技术等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

 

 

《移动通信》课程报告

 

 

题目:OFDM原理及其应用

 

 

 

 

专业班级        0191401       

姓    名        熊   鑫       

学    号       2014210227     

提交日期      2017年6月4日  

 

目 录

一、选题意义... 1

二、国内外研究现状分析... 1

三、内容    1

3.1 时域上的OFDM. 1

3.1.1信号的正... 1

3.1.2 OFDM的信号正交... 3

3.2 频域上的OFDM. 4

3.2.1 频域上的FDM. 4

3.2.2 OFDM的频谱... 4

### OFDM-ISAC 学习资源汇总 #### 1. ISAC通信感知一体化背景 未来的第五代(5G)和第六代(6G)无线系统预计能够提供高速率通信和高精度感知服务[^1]。为了实现这一目标,大量的研究集中在不同的场景和系统架构下的ISAC技术。 #### 2. OFDM-ISAC 技术概览 尽管当前许多ISAC的工作主要基于OFDM波形展开,但在特定条件下,如车辆移动引起的多普勒频偏会破坏OFDM子载波间的正交性,从而影响性能表现[^2]。然而,对于静态或低速环境而言,OFDM仍然是一个非常有效的选择,并且已经被广泛应用于早期的ISAC实验中。 #### 3. 学习路径建议 - **基础知识巩固**: 掌握基本的数字信号处理概念,特别是傅里叶变换及其逆运算;理解调制解调原理,尤其是QAM、PSK等常见方式。 - **深入理论学习**: 关注有关MIMO技术和毫米波传播特性的文献,因为这些都是现代无线通讯系统的基石之一。 - **实践操作训练**: 利用MATLAB/Simulink或其他仿真工具搭建简单的OFDM传输链路模型,尝试加入噪声干扰源观察其对BER的影响变化规律。 - **前沿动态追踪**: 定期查阅最新的学术期刊文章和技术报告,了解行业内最新进展趋势以及面临的挑战难题所在之处。 #### 4. 参考书籍与在线课程推荐 - *《Wireless Communications》* by Andrea Goldsmith 提供了一个全面而深刻的视角来看待整个无线通信领域内的核心知识点。 - Coursera平台上开设有专门面向工程师群体的基础级至高级别的系列专题讲座——“Introduction to Wireless Communication Systems”,非常适合初学者入门学习使用。 ```python import numpy as np from scipy import fftpack def ofdm_modulate(data_bits, num_subcarriers=64): """Simple OFDM modulation function""" symbols_per_frame = int(len(data_bits)/np.log2(num_subcarriers)) frames = data_bits.reshape(-1,symbols_per_frame) modulated_frames = [] for frame in frames: symbol_indices = np.arange(num_subcarriers) complex_symbols = (-1)**frame @ (symbol_indices[:,None]==range(symbols_per_frame)).astype(int)*2j*np.pi/num_subcarriers idft_result = fftpack.ifft(np.exp(complex_symbols), axis=0).real.flatten() cyclic_prefix_length = int(0.1*num_subcarriers) cp_added_signal = np.r_[idft_result[-cyclic_prefix_length:], idft_result] modulated_frames.append(cp_added_signal) return np.concatenate(modulated_frames) data_sequence = np.random.randint(0, 2, size=(1024,)) ofdm_signal = ofdm_modulate(data_sequence) print(ofdm_signal[:10]) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值