近20年大学毕业生人数增加了11.4倍。。。

你好,我是郭震

这几天有粉丝咨询我,说孩子毕业到现在还没有工作,问我该怎么办。

今天,我查了下现状,今年就业应该是普遍情况,如下图:

dfc1994d373b931e47e425bffd84b68c.png

再比如下图,数字怎么计算无从得知,但至少反映了情况:

f94af4f18c1d03bd54747ac0a65b65ce.png

是什么导致如此就业情况?

原因复杂,一个人很难全面概括。

不过,今天我想从近20年毕业生人数角度,解析毕业就业现状。

1 近20年毕业人数

供给端:企业。企业就那么多,招聘的人数也大概固定。

需求端:毕业生。如果毕业生人数增多,那么至少是导致工作难找的原因之一。

接下来,我们分析近20多年,毕业生人数的变化情况。

我从统计局下载了数据,使用Python绘制了柱状图,大家先直观感受人数的增加情况:

3c8b807b80f7f045ce46800d345539f3.png

分析下图表,得到一个核心结论:

2000年毕业人数94.98万,而2024今年人数就到了1179万,

人数增加了11.4倍

d12a22e12cc79b554d28ca31879328af.png

看到这个人数增加,我是有些吃惊的。只知道大学生不断增加,但确实没想到增加这么迅猛。

2021年毕业人数:909万,2022年毕业人数:1076万,2023年毕业人生:1158万,这几年大学生每年增加人数平均100万,这是什么概念?2000年毕业总人数才100万不到。

从数据中,我们就能看出,大学学历已经普及化,光靠学历就能找到好工作的事实,已渐行渐远。

大部分都有的学历,你没有,结果可想而知。具备了学历敲门砖后,如何更进一步找到工作呢?

让自己更全面些,掌握知识更体系些,综合素质更好些。知行合一,让行动落地,是最重要的步骤。

2 IT技术学习

说这些,不是为了给大家制造焦虑,而是想让大家认清现实。同时,我也贡献自己一份力量,开源我的IT教程。

想让自己变得更全面的老铁。可以逛逛我的网站:IT教程网,156门教程,全部开源免费

你未必选择AI专业,因为现在哪个专业都会用到AI。

不一定非在AI专业,才能学好AI,而是,只要你找到学习资源和方法,持之以恒努力,你也可以。

推荐我的IT教程网,这是我在IT行业的第10个年头,工作8年,现在读AI博士快2年。

我做的这个IT教程已有156门,算是IT教程大全了,全免费,需要的直接拿走:

0e1ce62b1fdd5bd0b819bf56b7c860b5.png

访问入口:https://zglg.work

3 普通人学AI指南

普通人了解AI应该做的最重要两件事

  • 应该先从AI工具使用开始

  • 应该先了解AI基础名词

普通人了解AI大忌:

  • 不应该上来就学AI理论

  • 不应该排斥AI,认为AI无用

基于上面,我也花费不少时间,做了一个详细的开源教程:《普通人学AI指南》.PDF

咱们先别弄那些高深的AI理论,先玩熟AI基本概念、AI工具、自己电脑搭建AI和知识库。

73228563691c9c00d9d2f81e91eb8ad5.png

PDF 指南思维导图

d42fd036ad1fb04b5a57d6aefc24a57a.png

PDF 首页截图

这个《普通人学AI指南》PDF,一共42页,都是我来编写的,完全开源,大家在我下面的公众号回复:AI指南,直接拿走。

两个星期,你就通过AI,大幅提升你的生产力!


最后,更多IT教程PDF下载,利用副业时间提高收入,转行就业指导等可以加入我的星球:

b833a2a1dd0bc9ceb793ad4bebbd3bef.png

原创教程不易,求点赞、转发、留言、在看支持,让我的微弱声音传播到更多其他朋友。

点击下方阅读原文,直达学习。

内容概要:该论文聚焦于6G通信中20-100GHz频段的电磁场(EMF)暴露评估问题,提出了一种基于自适应可重构架构神经网络(RAWA-NN)的预测框架。该框架通过集成权重分析模块和优化模块,能够自动优化网络超参数,显著减少训练时间。模型使用70%的前臂数据进行训练,其余数据用于测试,并用腹部和股四头肌数据验证模型泛化能力。结果显示,该模型在不同参数下的相对差异(RD)在前臂低于2.6%,其他身体部位低于9.5%,可有效预测皮肤表面的温升和吸收功率密度(APD)。此外,论文还提供了详细的代码实现,涵盖数据预处理、权重分析模块、自适应优化模块、RAWA-NN模型构建及训练评估等内容。 适合人群:从事电磁兼容性研究、6G通信技术研发以及对神经网络优化感兴趣的科研人员和工程师。 使用场景及目标:①研究6G通信中高频段电磁暴露对人体的影响;②开发更高效的电磁暴露评估工具;③优化神经网络架构以提高模型训练效率和预测精度。 其他说明:论文不仅提出了理论框架,还提供了完整的代码实现,方便读者复现实验结果。此外,论文还讨论了未来的研究方向,包括扩展到更高频段(如300GHz)的数据处理、引入强化学习优化超参数、以及实现多物理场耦合的智能电磁暴露评估系统。建议读者在实际应用中根据具体需求调整模型架构和参数,并结合真实数据进行验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值