DeepSeek接入个人知识库,Windows和Mac电脑,最新安装包发布!

你好,我是郭震

这篇文章主要介绍DeepSeek接入个人知识库,完整本地运行部署方案。

DeepSeek接入本地,运行个人知识库,最大好处就是确保私密文件和数据计算安全,不必把自己的文件全部跑到别人云端服务器。

在过去一个月,我们逐步迭代了这样的软件,DeepSeekMine,到今天其Windows和Mac版本最新软件安装包(v0.5)已全部开发并打包好。

软件全部开源,支持一键安装,开箱即用,本地知识查询高效,感兴趣的读者可以获取试试。

1 软件使用演示

第一步,如下进入软件首页,点击「新建」按钮,创建专属分类知识库,并命名为:个人藏书知识库,如下所示:

图片

第二步,点击「导入个人知识」:

图片

上传自己的文件,目前支持Word和PDF上传,后续会支持excel,PPT,不同编程语言代码格式等:

图片

第三步,点击右上角的「配置」按钮,配置本地大家已经安装的DeepSeek,若没有安装,可以通过Ollama安装,大家根据自己电脑下载对应的DeepSeek版本。

一般的运行deepseek-r1:1.5b大模型需要3G显存,目前新买的大部分电脑应该满足这个要求,若是不满足想更换电脑的朋友,最低电脑配置大家可以参考:GPU显卡NVIDIA GTX 1650 4GB 或 AMD RX 5500 4GB,内存(RAM):16GB;对于 Mac 用户,配备 M1、M2 或 M3 芯片的 MacBook Air(至少 8GB 内存)

安装Ollama后,执行下面这条命令,安装1.5B模型:

DeepSeek-r1下载到本地电脑命令

可以运行下面命令,在本地和DeepSeek对话:

Ollama软件启动deepseek-r1界面

接下来在咱们的DeepSeekMine软件里,如下中间面板,进行对个人知识的多轮问答:

图片

软件支持代码高亮显示:

图片

软件配备笔记保存功能:

图片

以上就是DeepSeekMine软件的主体功能介绍。

2 软件获取

今天发布最新v0.5软件,支持Windows、Mac电脑,双击一键安装:

图片

图片

安装后,开箱即用,获取方法在下面我的公众号回复:知识库,即可获取:

3 软件更新计划

下一版软件升级重点放在更新内核上,以及支持更多文件读入格式。

不少读者可能关心,DeepSeekMine软件内核,在这里我给大家介绍下,感兴趣的可以看看。

主要三个核心步骤,第一,后台预处理阶段,主要对上传的文档,做切片优化,根据微调的向量模型,异步计算嵌入向量:

图片

第二步查询阶段,我们会根据用户输入问题,做关键词粗晒,向量匹配,Rerank排序;第三步大模型响应阶段,这步主要是提示词工程,设计到多个提示词模版优化:

图片

技术主要包括,Meilisearch关键词粗晒+嵌入向量细筛(根据微调后的嵌入向量模型),Rerank算法,分词技术,长文本切分、切片合并算法,提示词工程等。

下一个版本将会完全实现上面三阶段的每个模块,这里面我们最想解决的是,如何保证RAG准确率同时,最大程度提升响应时间,尽量让普通电脑也能秒级响应。目前,主流的本地知识库查询响应时间普遍在2分钟以上,我们最想帮助大家解决这个痛点,让RAG在本地计算也能降到秒级。

最后总结一下

本文介绍新发的软件v0.5,如何使用,如何获取一键安装包,目前支持Windows,Mac.

下一版将会重点优化RAG精度,介绍了软件使用的主要技术方案,涉及到的技术,技术难点,我们有信心克服这些困难,给大家带来更快的访问体验。

以上全文1852字,13图。制作软件不易,如果觉得这个软件对你有用,可否点个关注。给我个三连击:点赞、转发和在看。若可以再给我加个⭐️,谢谢你看我的文章,我们下篇再见。

<think>好的,我需要帮助用户了解在本地部署DeepSeek后如何构建配置知识库。根据用户提供的引用资料,首先应该整理出步骤流程。 首先,用户已经完成了DeepSeek的本地部署,可能已经安装了Ollama并下载了模型文件,如引用12提到的。接下来需要搭建知识库,引用34提到了使用特定工具,比如AnythingLLM。因此,步骤可能包括安装知识库管理工具、导入文件、配置DeepSeek模型等。 接下来,需要详细说明每个步骤的具体操作。比如,安装AnythingLLM可能需要下载配置,然后添加本地文件到知识库中。同时,需要确保DeepSeek模型正确接入,这可能涉及到在工具中选择Ollama作为模型源,并指定相应的模型名称。 还需要注意用户可能的疑问点,比如如何导入不同类型的文件,或者如何处理内网部署的情况。根据引用24,内网部署可能需要特别的配置,比如离线安装或路径设置。此外,测试知识库是否生效也是关键步骤,用户可能需要验证回答是否基于上传的资料。 最后,生成相关问题时要围绕知识库搭建的后续步骤、工具选择、优化方法等,帮助用户进一步探索。需要确保回答结构清晰,步骤明确,并正确引用提供的资料中的信息。</think>### 如何在本地部署后构建配置DeepSeek知识库 #### 步骤一:完成DeepSeek本地部署 1. **安装Ollama** 访问[Ollama官网](https://ollama.com/)下载对应操作系统的安装包Windows/Mac/Linux),完成基础环境配置[^1][^2]。 2. **下载DeepSeek模型** 在Ollama中通过命令行拉取DeepSeek模型(如`ollama pull deepseek-chat`)[^2]。 #### 步骤二:选择知识库管理工具 推荐使用**AnythingLLM**或**Cherry-Studio**: - **AnythingLLM**:支持本地文件解析向量化存储,提供可视化界面管理知识库[^4]。 - **Cherry-Studio**:通过界面化操作直接关联Ollama模型本地知识库[^1]。 #### 步骤三:配置知识库 以AnythingLLM为例: 1. **安装与启动** 下载AnythingLLM并解压,运行启动脚本(如`docker-compose up`或直接启动可执行文件)[^4]。 2. **关联DeepSeek模型** - 在设置中选择“Ollama”作为模型供应商。 - 输入Ollama服务地址(如`http://localhost:11434`),选择已下载的DeepSeek模型名称[^4]。 3. **导入本地文件** - 进入知识库管理界面,上传文档(支持PDF、TXT、Markdown等格式)。 - 文件会被自动解析并向量化存储,生成知识库索引[^3]。 #### 步骤四:测试知识库功能 1. 创建对话助手,选择已配置的DeepSeek模型对应的知识库。 2. 提问时,系统会优先从知识库中检索相关内容,再结合模型生成回答。 *示例问题*: - “根据知识库文档,DeepSeek的核心优势是什么?” - 验证回答是否引用了上传文件中的信息[^3]。 #### 步骤五:优化配置(可选) 1. **调整检索策略**:设置关键词权重、相似度阈值等参数。 2. **增量更新**:定期上传新文件,知识库支持动态扩展。 ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值