PyTorch的安装,一般常见的是Anaconda/miniconda+Pytorch+ (Pycharm/VS Code) 的工具,我们的安装分为以下几步
1 Anaconda的安装
在DL和ML中,要用到大量成熟的package。一个个安装 package 很麻烦,而且容易出现奇奇怪怪的问题。而 Anaconda很好的解决了我们的问题,它集成了常用于科学分析(机器学习, 深度学习)的大量package。省略了我们安装一些package的过程。
1.1 安装Anaconda/miniconda
(1)登陆Anaconda | Individual Edition,选择相应系统DownLoad
(2)可以去清华镜像安装相应系统,Windows根据64位或者32位下载对应的.exe,Linux安装.sh,Mac安装.pkg。一般建议不要选择最新版的(不太稳定),这里建议选择前两年中的anaconda3随意一个版本。
这里以Linux为例,假设安装包已下载,可以直接在终端输入命令,首先cd到你有这个安装包的文件夹中(假设是Documents)
cd Documents
随后执行bash + 安装包名(文件夹路径名也行)
bash "/home/carpediem/Downloads/Anaconda3-5.3.1-Linux-x86_64.sh"
详细安装步骤步骤可以参考一下各系统的安装教程:
- Anaconda超详细安装教程(Windows环境下):https://blog.csdn.net/fan18317517352/article/details/123035625
- 在Linux服务器上安装Anaconda(超详细):https://blog.csdn.net/wyf2017/article/details/118676765
- Mac上安装Anaconda最全教程:https://zhuanlan.zhihu.com/p/350828057
1.2 检验是否安装成功
Windows在开始页找到Anaconda Prompt,一般在Anaconda3的文件夹下,Linux在终端输入anaconda就可以验证,
输入之后是没有找到命令,很可能是因为环境变量还没有配置好。输入下面的命令:
vim ~/.bashrc
进入后在最后一行添加,其中username是你的账户名,这里根据你自己安装的Anacona的路径进行修改:
export PATH=/home/username/anaconda3/bin:$PATH
加之后更新配置文件
source ~/.bashrc
重新输入anaconda,就可以验证是否安装成功。
1.3 创建虚拟环境
Linux在终端(Ctrl+Alt+T)进行,Windows在Anaconda Prompt进行
查看现存虚拟环境
conv info --env
conda env list
1. 创建虚拟环境
在深度学习和机器学习中,我们经常会创建不同版本的虚拟环境来满足我们的一些需求。下面我们介绍创建虚拟环境的命令。在选择Python版本时,不要选择太高,建议选择3.6-3.8,版本过高会导致相关库不适配。
conda create -n env_name python==version
2. 删除虚拟环境命令
conda remove -n env_name --all
3. 激活环境命令
conda activate env_name
4. 退出当前环境
conda deactivate
1.4 换源
在安装package时,我们经常会使用pip install package_name
和conda install package_name
的命令,但是一些package下载速度会很慢,因此我们需要进行换源,换成国内源,加快我们的下载速度。以下便是两种对应方式的换源
1.4.1 pip换源
1. Linux
Linux下的换源,我们首先需要在用户目录下新建文件夹.pip
,并且在文件夹内新建文件pip.conf
,具体命令如下
cd ~
mkdir .pip/
vi pip.conf
随后,我们需要在pip.conf
添加下方的内容:
[global]
index-url = http://pypi.douban.com/simple
[install]
use-mirrors =true
mirrors =http://pypi.douban.com/simple/
trusted-host =pypi.douban.com
2. Windows
- 文件管理器文件路径地址栏敲:
%APPDATA%
回车,快速进入C:\Users\电脑用户\AppData\Roaming
文件夹中; - 新建 pip 文件夹并在文件夹中新建
pip.ini
配置文件; - 我们需要在
pip.ini
配置文件内容,我们可以选择使用记事本打开,输入以下内容,并按下ctrl+s保存,在这里我们使用的是豆瓣源为例子。
[global]
index-url = http://pypi.douban.com/simple
[install]
use-mirrors =true
mirrors =http://pypi.douban.com/simple/
trusted-host =pypi.douban.com
常用的镜像安装源网站
(1)阿里云 http://mirrors.aliyun.com/pypi/simple/
(2)豆瓣 http://pypi.douban.com/simple/
(3)中国科学院 http://pypi.mirrors.opencas.cn/simple/
(4)清华大学 https://pypi.tuna.tsinghua.edu.cn/simple/
(5)中国科学技术大学 http://pypi.mirrors.ustc.edu.cn/simple/
(6)华中科技大学 http://pypi.hustunique.com/
(7)Python官方 https://pypi.python.org/simple/
(8)v2ex http://pypi.v2ex.com/simple/
1.4.2 conda换源
(1) 查看源
conda config --show-sources
(2) 切换源
conda config --add channels XXXX
conda config --set show_channel_urls yes
(3) 删除源
conda config --remove channels XXX
(4) 换回源
conda config --remove-key channels
1. Windows系统
TUNA 提供了 Anaconda 仓库与第三方源的镜像,各系统都可以通过修改用户目录下的 .condarc
文件。Windows 用户无法直接创建名为 .condarc
的文件,可先执行conda config --set show_channel_urls yes
生成该文件之后再修改。
完成这一步后,我们需要修改C:\Users\User_name\.condarc
这个文件,打开后将文件里原始内容删除,将下面的内容复制进去并保存。
channels:
- defaults
show_channel_urls: true
default_channels:
- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
msys2: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
bioconda: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
menpo: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
simpleitk: http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
这一步完成后,我们需要打开Anaconda Prompt
运行 conda clean -i
清除索引缓存,保证用的是镜像站提供的索引。
2. Linux系统
在Linux系统下,直接在终端输入以下命令
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --add channels http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/peterjc123/
我们还需要修改.condarc
来进行
cd ~
vi .condarc
在vim
下,我们需要输入i
进入编辑模式,将上方内容粘贴进去,按ESC
退出编辑模式,输入:wq
保存并退出。
我们可以通过conda config --show default_channels
检查下是否换源成功。同时,我们仍然需要conda clean -i
清除索引缓存,保证用的是镜像站提供的索引。若源不生效,试着把.condarc
文件中的 - defaults
那行去掉
2 检查有无NVIDIA GPU
该部分如果仅仅只有CPU或者集显的小伙伴们可以跳过该部分。
- windows
我们可以通过在cmd/terminal中
输入nvidia-smi
(Linux和Win命令一样)、使用NVIDIA控制面板和使用任务管理器查看自己是否有NVIDIA的独立显卡及其型号
- linux
我们需要看下版本号,看自己可以兼容的CUDA版本,等会安装PyTorch时是可以向下兼容的。具体适配表如下图所示。
3 PyTorch的安装
Step 1:登录PyTorch官网
Step 2:Install
这个界面我们可以选择本地开始(Start Locally),云开发(Cloud Partners),以前的Pytorch版本(Previous PyTorch Versions),移动端开发(Mobile),在此处我们需要进行本地安装。
Step 3:选择命令
我们需要结合自己情况选择命令并复制下来,然后使用conda下载或者pip下载(建议conda安装)
打开Terminal
,输入conda activate env_name
,激活环境并切换到环境下面,我们就可以进行PyTorch的安装了
注:
-
Stable代表的是稳定版本,Preview代表的是先行版本
-
可以结合电脑是否有显卡,选择CPU版本还是CUDA版本,建议还是需要NVIDIA GPU
-
官方建议我们使用Anaconda来进行管理
-
关于安装的系统要求
- Windows:
- Windows 7及更高版本;建议使用Windows 10或者更高的版本
- Windows Server 2008 r2 及更高版本
- Linux:以常见的CentOS和Ubuntu为例
- CentOS, 最低版本7.3-1611
- Ubuntu, 最低版本 13.04,这里会导致cuda安装的最大版本不同
- macOS:
- macOS 10.10及其以上
- Windows:
-
有些电脑所支持的cuda版本<10.2,此时我们需要进行手动降级,即就是cudatoolkit = 你所适合的版本,但是这里需要注意下一定要保持Pytorch和cudatoolkit的版本适配。查看Previous PyTorch Versions | PyTorch
Step 4:在线下载
如果我们使用的Anaconda Prompt
进行下载的话,我们需要先通过conda activate env_name
,激活我们的虚拟环境中去,再输入命令。
注: 我们需要要把下载指令后面的-c pytorch
去掉以保证使用清华源下载,否则还是默认从官网下载。
Step 5:离线下载
Windows
在安装的过程中,我们可能会出现一些奇奇怪怪的问题,导致在线下载不成功,我们也可以使用离线下载的方法进行。
下载地址:https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
通过上面下载地址,我们需要下载好对应版本的pytorch和 torchvision 包,然后打开Anaconda Prompt
/Terminal
中,进入我们安装的路径下。
cd package_location
conda activate env_name
接下来输入以下命令安装两个包
conda install --offline pytorch压缩包的全称(后缀都不能忘记)
conda install --offline torchvision压缩包的全称(后缀都不能忘记)
Step 6:检验是否安装成功
进入所在的虚拟环境,紧接着输入python
,在输入下面的代码。
import torch
torch.cuda.is_available()
这条命令意思是检验是否可以调用cuda,如果我们安装的是CPU版本的话会返回False,能够调用GPU的会返回True。一般这个命令不报错的话就证明安装成功。
参考
- PyTorch的安装:https://github.com/datawhalechina/thorough-pytorch/blob/main/source/
- 使用清华、阿里等镜像源提高pytorch安装成功率:https://blog.csdn.net/Robin_Pi/article/details/107538672