最大子数组 by Haskell

FIND-MAXIMUM-SUBARRAY

算法导论中文第三版p42页习题4.1-5
非递归的线性时间的最大子数组算法
。。。然而Haskell没循环啊。。。,我这种写法也算书中描述的吧。。。?

不过这道题就已经很体现函数式的优势了,写这种题太爽了,elegant!完全入坑

最气的是这道题在codewars上有问题,test全过但是因为一个Tab不让submit!难得做一道5kyu的题,下次提前看issue

算法描述

算法使用如下思想为最大子数组问题设计一个非递归的,线性时间复杂度的算法。从数组左边界开始,由左至右处理,记录到目前为止已经处理过的最大子数组。若已知A[1…j]的最大子数组,基于如下性质将解扩展为A[1…j+1]的最大子数组:A[1…j+1]的最大子数组要么是A[1…j]的最大子数组,要么是某个子数组Ai…j+1。在已知A[1…j]的最大子数组的情况下,可以在线性时间内找出形如A[i..j+1]的最大子数组

来看代码!

maxSequence :: [Int] -> Int
maxSequence [] = 0
maxSequence all@(x:xs) = max (maxSequence xs)  (maximum $ scanl (+) 0 all)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值