摘要
线检测在场景识别、三维重建、同步定位与制图(SLAM)等机器人任务中有着广泛的应用。与点相比,线可以为下游任务提供低级和高级几何信息。在本文中,我们提出了一种新的基于边缘的线检测算法AirLine,它可以应用于各种任务。与现有基于端点的可学习方法对环境几何条件敏感不同,AirLine方法可以直接从边缘提取线段,对未知环境具有更好的泛化能力。为了平衡效率和准确性,我们引入了区域生长算法和局部边缘投票方案来进行线参数化。据我们所知,AirLine是第一个可学习的基于边缘的线检测方法之一。我们的大量实验表明,与其他基于学习的方法相比,它保留了最先进的精度,但具有3 - 80倍的运行时加速,这对低功耗机器人至关重要。
I. INTRODUCTION
总之,本文的主要贡献是:
(1)我们提出了AirLine,这是一个快速、鲁棒和准确的基于边缘的线检测通道,没有明确的端点检测,其中每个模块都是即插即用的,可以很容易地被其他更好的方法替代。
(2)设计了一种新的基于局部边缘投票的边缘到线转换方案,避免了点到线方法的敏感性和低效率,以及传统基于霍夫变换的边缘到线方法存在的线重叠问题和低质量问题。
(3)我们提出了一种新的基于像素级评估的线段检测度量,强调边缘线一致性。我们还展示了AirLine保持了最先进水平的精度,但具有3 - 80倍的运行时加速。据我们所知,AirLine是第一个可学习的基于边缘的线检测方法。源代码发布在https://github.com/ sair-lab/AirLine,以使社区受益。
III. METHODOLOGY
图1 AirLine的架构非常简单,只包含边缘检测、方向检测、条件区域生长和直线参数化四个模块。
A. Edge Detection
具体来说,我们采用U-Net作为我们的边缘检测器。为了提高检测边缘的连续性,我们使用加权掩蔽二进制交叉熵(BCE)损失Ledge对假阳性预测施加弱惩罚:
B. Orientation Detection
图2:方向检测模块中的投票卷积核。每个通道具有特定方向的1像素宽的线。
其中每个通道描述像素属于特定方向的概率
C. Conditional Region-grow
我们引入了一种条件区域增长(CRG)算法来分组连续直边和输出边组,这些边组将用于线参数化。在算法1中,我们首先将h(p)定义为一个返回像素p周围8个相邻像素的运算符。然后我们声明F为一个列表,用于存储搜索过程中的边界像素,并声明阈值m用于跳过像素过少的区域.
D. Line Parameterization
AirLine的最后一步是通过局部边缘投票将生长的直边组参数化为线段。具体来说,我们的目标是提取所有潜在线的中心、切向量和端点。虽然可以使用区域平均方向描述符Davg R直接计算切向量,但在实验中我们发现使用精确像素坐标参数化更精确。
具体来说,我们首先确定质心m作为直线上的锚点;然后投个切线票向量v *表示直线的方向;最后,从最远的像素点到中心得到端点。因此,对于每一行,参数可以计算为:
E. Evaluation Metric
我们认为,像素级的线覆盖精度可以更好地反映线检测的质量。为了解决上述问题并为线路检测任务提供有用的视角,我们提出了一个新的度量,例如(7)中的线路精度(LPr),考虑了所有合理的线路。
IV. EXPERIMENTS
B. Overall Performance
我们首先使用广泛使用的Wireframe数据集进行定量评估,并与LCNN、LETR和LSD等最先进的方法进行比较。它由一组5000张房屋结构图像组成,既适合训练,也适合准确性测试。我们在表1中给出了测试集上的LP分数和每秒帧数(FPS),其中AirLine达到了与得分最高的方法LCNN相当的精度,但运行效率要高得多,即大约比LCNN快25倍。不同方法的输出示例如图8所示。为了更好地可视化,我们在图7a中显示了LP0(最严格的度量)的性能轮廓,在图7b中显示了完整的LP分数。可以看出,AirLine在平衡准确性和效率方面的综合性能最好,比其他方法有较大的差距。值得注意的是,LSD在图7a中实现了第二好的整体性能,这也是LSD在机器人任务中仍然比其他最新方法(例如LCNN)更受欢迎的原因之一。
图8
图 7: AirLine的整体表现:(a)为性能轮廓线(lp0 - fps);越靠近右上角,精度速度性能越好。(b)给出了不同设置下的线精度。
E. Ablation Study
F. Live Demo
我们进一步展示了一个现场演示,并在图11中显示了四个快照,以展示AirLine的鲁棒性。目标是在光照和视口变化的情况下尽可能一致地检测线条。即使环境中的亮度频繁变化,我们也观察到稳定的线检测:左侧两张图像呈现两个过度曝光帧,而右侧显示同一场景的暗得多的帧。
图11:成功地产生了稳定一致的检测与显著的照明变化。