Numpy Where() 使用详细介绍

Numpy where()函数是一个功能强大的工具,可用于过滤列表、元组和 Numpy 数组中的数组元素。它通过使用条件谓词来工作,类似于SQL查询中 WHERE 或 HAVING 子句中使用的逻辑。如果您不熟悉 SQL,也没关系 - 您无需了解它即可继续学习本教程。

当您有一个数组并且需要根据其值以不同方式分析其元素时,通常会使用np.where()。例如,您可能需要用零替换负数,或者用更有意义的值替换缺失值(例如None或 )np.nan。运行 时where(),您将生成一个包含分析结果的新数组。

使用时,通常需要提供三个参数where()。首先,提供一个条件,原始数组中的每个元素都与该条件相匹配。然后,提供两个附加参数:第一个参数定义如果元素符合条件,则要执行的操作;第二个参数定义如果元素不符合条件,则要执行的操作。

如果你觉得这一切听起来与 Python 的三元运算符类似,那你就对了。逻辑是一样的。

注意:在本教程中,您将使用二维数组。但是,相同的原理可应用于任何维度的数组。

如何使用 Numpy 编写条件表达式where()

最常见的使用场景之一where()是当您需要根据某些条件用其他值替换 Numpy 数组中的某些元素时。

考虑以下数组:

Python

>>> import Numpy as np

>>> test_array = np.array(

...     [

...         [3.1688358, 3.9091694, 1.66405549, -3.61976783],

...         [7.33400434, -3.25797286, -9.65148913, -0.76115911],

...         [2.71053173, -6.02410179, 7.46355805, 1.30949485],

...     ]

... )

首先,您需要将 Numpy 库导入到程序中。使用别名是标准做法np,它允许您使用这种缩写形式引用该库。

生成的数组有三行四列,每列包含一个浮点数。

现在假设您想将所有负数替换为正数:

Python

>>> np.where(

...     test_array < 0,

...     test_array * -1,

...     test_array,

... )

array([[3.1688358 , 3.9091694 , 1.66405549, 3.61976783],

       [7.33400434, 3.25797286, 9.65148913, 0.76115911],

       [2.71053173, 6.02410179, 7.46355805, 1.30949485]])

结果是一个新的 Numpy 数组,其中负数被正数替换。仔细查看原始数组test_array,然后查看新数组的相应元素all_positives,你会发现结果正是你想要的。

注意:上面的示例让您了解该函数的工作原理where()。如果您在实践中这样做,您很可能会使用np.abs()或np.absolute()函数。两者的作用相同,因为前者是后者的简写:

Python

>>> np.abs(test_array)

### 使用 `numpy.where` 进行数组元素替换 `numpy.where` 是一种强大的工具,用于基于条件对数组中的元素进行操作。它可以根据指定的布尔条件返回不同的值集合[^1]。 #### 基本语法 `numpy.where(condition[, x, y])` - **condition**: 条件表达式,通常是一个布尔数组。 - **x**: 当条件为真时使用的数组或值。 - **y**: 当条件为假时使用的数组或值。 如果仅提供 `condition` 参数,则会返回满足该条件的索引位置;当同时提供了 `x` 和 `y` 参数时,将按照条件分别取自 `x` 或 `y` 中对应的值[^2]。 #### 示例代码 以下是通过 `numpy.where` 替换数组中满足特定条件的元素的具体实现: ```python import numpy as np # 定义输入数据 xarr = np.array([1.1, 1.2, 1.3, 1.4, 1.5]) yarr = np.array([2.1, 2.2, 2.3, 2.4, 2.5]) cond = np.array([True, False, True, True, False]) # 使用 numpy.where 实现元素替换 result = np.where(cond, xarr, yarr) print(result) ``` 上述代码的结果将是 `[1.1, 2.2, 1.3, 1.4, 2.5]`。对于每一个对应的位置,如果 `cond` 数组中的值为 `True`,则从 `xarr` 取值;否则从 `yarr` 取值。 #### 更复杂的场景 可以进一步扩展到更复杂的情况,比如直接修改原数组或者动态计算替代值: ```python # 动态计算替代值 data = np.array([0, 1, 2, 3, 4, 5]) modified_data = np.where(data > 2, data * 10, data + 1) print(modified_data) # 输出 [1, 2, 3, 30, 40, 50] ``` 在此例子中,任何大于 2 的数值都会被乘以 10,而其他小于等于 2 的数会被加 1 后作为新值。 ### 总结 利用 `numpy.where` 函数能够高效完成基于条件判断的大规模数组运算任务,在数据分析领域具有广泛的应用价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

潜洋

你的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值