Numpy where()函数是一个功能强大的工具,可用于过滤列表、元组和 Numpy 数组中的数组元素。它通过使用条件谓词来工作,类似于SQL查询中 WHERE 或 HAVING 子句中使用的逻辑。如果您不熟悉 SQL,也没关系 - 您无需了解它即可继续学习本教程。
当您有一个数组并且需要根据其值以不同方式分析其元素时,通常会使用np.where()。例如,您可能需要用零替换负数,或者用更有意义的值替换缺失值(例如None或 )np.nan。运行 时where(),您将生成一个包含分析结果的新数组。
使用时,通常需要提供三个参数where()。首先,提供一个条件,原始数组中的每个元素都与该条件相匹配。然后,提供两个附加参数:第一个参数定义如果元素符合条件,则要执行的操作;第二个参数定义如果元素不符合条件,则要执行的操作。
如果你觉得这一切听起来与 Python 的三元运算符类似,那你就对了。逻辑是一样的。
注意:在本教程中,您将使用二维数组。但是,相同的原理可应用于任何维度的数组。
如何使用 Numpy 编写条件表达式where()
最常见的使用场景之一where()是当您需要根据某些条件用其他值替换 Numpy 数组中的某些元素时。
考虑以下数组:
Python
>>> import Numpy as np
>>> test_array = np.array(
... [
... [3.1688358, 3.9091694, 1.66405549, -3.61976783],
... [7.33400434, -3.25797286, -9.65148913, -0.76115911],
... [2.71053173, -6.02410179, 7.46355805, 1.30949485],
... ]
... )
首先,您需要将 Numpy 库导入到程序中。使用别名是标准做法np,它允许您使用这种缩写形式引用该库。
生成的数组有三行四列,每列包含一个浮点数。
现在假设您想将所有负数替换为正数:
Python
>>> np.where(
... test_array < 0,
... test_array * -1,
... test_array,
... )
array([[3.1688358 , 3.9091694 , 1.66405549, 3.61976783],
[7.33400434, 3.25797286, 9.65148913, 0.76115911],
[2.71053173, 6.02410179, 7.46355805, 1.30949485]])
结果是一个新的 Numpy 数组,其中负数被正数替换。仔细查看原始数组test_array,然后查看新数组的相应元素all_positives,你会发现结果正是你想要的。
注意:上面的示例让您了解该函数的工作原理where()。如果您在实践中这样做,您很可能会使用np.abs()或np.absolute()函数。两者的作用相同,因为前者是后者的简写:
Python
>>> np.abs(test_array)