深度学习-Windows下开发环境搭建-CUDA环境安装

深度学习

Windows下开发环境搭建

3. CUDA环境安装

参考链接:

官方文档:https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html

系统要求:

翻译:

要在你的系统上使用CUDA,需要安装:

3.1 首先检查并更新一下自己的显卡驱动

官网CUDA工具包和兼容的驱动程序版本对照:https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

在这里插入图片描述

  • 鼠标右键,打开NVIDIA控制面板
    在这里插入图片描述

  • 点击左下角的系统信息

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-gp6VRAKk-1622711891289)(noteImage/image-20201128134537926.png)]

  • 可以看到自己的显卡型号,我的这里是GeForce 940MX(记住这个型号就可以了),驱动程序版本还是388.57的,比较老了。
    在这里插入图片描述

  • 点击组件,看到显卡支持的CUDA还是9.1的
    在这里插入图片描述

  • 对照上面的表格,可以看到如果要装CUDA9.1的话,驱动程序建议为>=391.29。
    在这里插入图片描述

  • 上面的对照啥的只是看看,只需要知道自己的显卡型号就行,下面更新一些对应显卡的驱动

显卡驱动程序下载:https://www.nvidia.com/download/index.aspx?lang=en-us#

  • 如下图,找到自己对应的显卡。即Product栏中有上面看到的显卡型号(我这里是GeForce 940MX)
    在这里插入图片描述

  • 点击SEARCH按钮,如果搜索出来没有结果,就修改一下Download TypeLanguage,搜索到了的话,会出现下图,点击下载按钮。
    在这里插入图片描述

  • 继续点击下载按钮
    在这里插入图片描述

  • 开始下载。(如果浏览器下载比较慢的话,可以把下载链接复制到迅雷进行下载)
    在这里插入图片描述

  • 下载下来之后,双击程序,开始安装
    在这里插入图片描述

  • 可以更改一下安装路径(不过好像改了也没什么用,安装完后这个路径找不到了),点击OK
    在这里插入图片描述

  • 等待安装
    在这里插入图片描述

  • 选择同意并继续
    在这里插入图片描述

  • 选择自定义安装,点击下一步
    在这里插入图片描述

  • 点击下一步
    在这里插入图片描述

  • 等待安装
    在这里插入图片描述

  • 安装完成,点击关闭。
    在这里插入图片描述

  • 再去看一下自己的显卡驱动程序。可以看到,驱动程序版本已经从之前的388.57更新到了457.30,现在已经也可以支持CUDA 11.1了
    在这里插入图片描述
    在这里插入图片描述

  • OK,到这里显卡驱动就更新完了,下面来安装目前最新的CUDA 11.1

3.2 安装CUDA 11.1

官方文档:https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html

CUDA工具包下载:http://developer.nvidia.com/cuda-downloads

在这里插入图片描述

  • 选择位置,并保存,开始下载。(如果浏览器下载慢的话,可以把下载链接复制到迅雷中,使用迅雷下载会快很多)
    在这里插入图片描述

  • 下载下来之后,双击应用程序,开始安装
    在这里插入图片描述

  • 更改一下安装路径(不过好像没什么用,安装完之后cuda_11.1目录不见了),点击OK
    在这里插入图片描述

  • 等待安装
    在这里插入图片描述
    在这里插入图片描述

  • 点击同意并继续
    在这里插入图片描述

  • 选择自定义,点击下一步
    在这里插入图片描述

  • 由于之前我们已经更新过驱动程序了,这里只用勾选第一个就可以了。点击下一步
    在这里插入图片描述

  • 这里的安装位置可以不用改,点击下一步
    在这里插入图片描述

  • 我犹豫了一下,我自己决定还是改一下安装位置。(等安装完了发现,这里的还是不改安装路径比较好,后面会有几个地方在官方文档中都是用的上图↑中的路径,如果这里改了路径的话,之后就要仔细对照着来,比较麻烦。 当然,我这里实际安装时是采用的修改之后的安装路径,即下图中的路径)。点击下一步
    在这里插入图片描述

  • 等待安装
    在这里插入图片描述
    在这里插入图片描述

  • 安装过程中报了个错,点击确定即可,好像不影响。
    在这里插入图片描述

  • 安装完成,点击下一步
    在这里插入图片描述

  • 点击关闭
    在这里插入图片描述

  • 打开cmd命令行窗口,输入nvcc -V,回车,可以看到如下信息。
    在这里插入图片描述

  • 再看一下环境变量中的系统变量,可以看到,安装过程中自动帮我们添加了两个变量:CUDA_PATHCUDA_PATH_V11_1
    在这里插入图片描述

  • 验证安装是否成功

如果上面那里没有更改路径的话,可以参考官方文档(https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html#verify-installation)中的路径,来找到deviceQuerybandwidthTest

  • 如果更改了路径的话,对照自己更改的路径,deviceQuerybandwidthTest都在extras\demo_suite目录下。在...\extras\demo_suite的目录下打开cmd命令行窗口,分别输入.\deviceQuery.exe.\bandwidthTest.exe,如下图,如果Result均为PASS,则说明CUDA安装成功
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  • OK,到这里CUDA就安装好了。

3.3 安装cuDNN

官方文档:https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#install-windows

下载地址:https://developer.nvidia.com/rdp/cudnn-download(需要先登录)

  • 在下载cuDNN之前,需要先注册一个账号并登录。
    在这里插入图片描述

  • https://developer.nvidia.com/developer-program中先注册一个账号,并登录。在https://developer.nvidia.com/rdp/cudnn-download中点击下载。勾选I Agree后,选择for CUDA 11.1的那个,
    在这里插入图片描述

  • 再选择Windows版的下载。(如果浏览器下载比较慢的话,可以把下载链接复制到迅雷中,使用迅雷下载会快很多)
    在这里插入图片描述

  • 下载下来是一个压缩包,把压缩包解压到当前目录。
    在这里插入图片描述

  • 如果之前安装CUDA时没有更改过路径,那就可以安装官方文档中的路径,将文件复制粘贴过去。
    在这里插入图片描述

  • 如果之前安装CUDA时更改过路径的话,就把cuda下面的binincludelib这三个文件夹复制粘贴到CUDA Development(对应之前更改后的安装路径)下。
    在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

  • OK,粘贴过来之后就可以了。到这里cuDNN就安装好了。

创作不易,喜欢的话加个关注点个赞,❤谢谢谢谢❤

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值