30天挑战翻译100篇论文
坚持不懈,努力改变,在翻译中学习,在学习中改变,在改变中成长…
A method for modulation recognition based on entropy features and random forest
基于熵特征和随机森林的调制识别方法
Zhen Zhang, Yibing Li, Xiaolei Zhu, Yun Lin*
College of Information and Communication Engineering
Harbin Engineering University
Harbin, China
Corresponding Author: linyun_phd@hrbeu.edu.cn
2017 IEEE International Conference on Software Quality, Reliability and Security (Companion Volume)
摘要—由于低信噪比环境,通常信号调制类型的调制识别率不是很高。 本文研究了一种低信噪比的通信信号调制类型自动识别方法。
通过分析信号熵为特征,选择了三个特征,并以随机森林为分类器,最终得到了几种低信噪比的通信信号调制类型的高识别率。 通过仿真证明,该方法在不同信噪比(SNR)下识别信号类型具有优异的性能。 当SNR高于5 dB时,除QPSK信号外,信号识别率均超过95%。 总之,识别系统的设计简单,将具有重要的应用价值。
关键词:调制识别; 熵特征 随机森林
1.简介
由于频谱有限,为了满足各种用户的需求并更充分地利用频率资源,信号以不同的方式进行调制。 随着电子技术的发展,通信信号系统和调制方式变得越来越多样化和复杂,通信标准也在不断提高。
多年来,调制识别的重要性日益提高[1],在军事和商业应用中已经进行了广泛的工作[2],此外,在智能信号分析和处理中,调制识别也是一项关键技术[ 3]。
通常,调制识别方法分为两大类:人工识别方法和自动调制识别方法。 人工识别方法是将信号从高频转换为中频,然后使用调制解调器对信号进行解调,然后使用耳机和频谱分析仪等相关仪器来判断解调结果。
但是,人工识别方法需要丰富的经验和知识,现有符号率高,持续时间短的情况下,识别率不够准确。
自动调制识别方法分为三个主要过程:数据预处理,特征提取和分类决策。数据预处理是对信号进行下变频后的载波和符号率的估计。 特征提取的用途是转换原始数据,以提取一些可以更容易分类的特征。 分类决策是根据提取的特征来判断调制类型。
基于特征(FB)[4-5]的方法是一种常见的自动调制识别算法,根据观察到的数据,我们可以采用通过某些特定方式选择的一些特征来做出决策。 通常,FB方法易于实现,如果设计适当,它可以具有出色的性能。 当我们正确识别调制类型时,可以解决后续工作,例如信号解调。 特别是,在没有任何输入信号先验知识的情况下,环境中的自动调制识别是期望信道的频率选择性和时变性质的一项困难技术[6]。
在这项工作中,我们提出了一种利用熵特征的自动调制识别模型。
首先,我们介绍一种信号模型,其次,提取五种熵特征。 得到每个信号在每个熵特征上的分布,然后通过观察熵特征空间中的分布来验证分类的可行性。 另外,开发了基于随机森林的分类器以达到决策[2]。 具体而言,我们能够对7种常用调制类型进行分类:2FSK,4FSK,8FSK,BPSK,QPSK以及16QAM和MSK。
对不同信噪比的仿真证实了该算法的有效性。本文的结构如下。 第二节给出了全文的系统模型,第三节介绍了三种信息熵作为我们提取的特征。
第四节描述了随机森林和分类器的设计。 第五节使用七种信号进行实验。 最后第六节总结了本文。
2.系统模型
像在许多研究中一样,在本文中,我们也假定可以完全恢复频率偏移和时间偏移,而且,我们还向信道添加了加性高斯白噪声(AWGN)。 接收信号的一般表达式是一个随机事件 X ( x 1 , x 2 , . . . , x i , . . . , x n ) X(x_1,x_2,...,x_i,...,x_n) X(x1,x2