Let there be Color!: Automatic Image Colorization with Simultaneous Classification - sig - 2016

本文介绍了一篇关于自动图像着色的研究论文,该论文提出了一种无需用户干预的端到端网络,能同时学习图像的全局和局部特征,并利用语义上下文信息进行分类。通过结合低层、中层和高层特征网络,以及颜色网络,模型能够将灰度图像恢复为色彩图像。研究重点在于利用全局信息进行风格迁移,并通过类别信息区分不同场景。虽然模型在不同场景和旧图像上表现良好,但可能无法处理多种可能的色彩映射情况。
摘要由CSDN通过智能技术生成

最近在arxiv上逛逛,看到一篇关于colorization的paper觉得挺有意思的:

Let there be Color!: Joint End-to-end Learning of Global and Local Image Priors for Automatic Image Colorization with Simultaneous Classification - sig - 2016

作者开源了代码:

https://github.com/satoshiiizuka/siggraph2016_colorization

===

先看看效果,从Fig1可以看出,该论文能够很好地从gray image还原到color image,效果不错。



motivation:

对于纹理区域,如天空,草地,树叶,街道,墙,海面等这些,

如何利用全局和局部的信息,使得网络可以充分学习到并区分到?

如何利用context的信息来区分不同场景下的图像,如indoor,outdoor?

所有该paper的核心研究内容是:如何充分利用global,local,semantic context信息,来更好地训练网络模型:

1 user-intervention-free的方式,即不需要用户的干涉,例如graphcut需要用户的操作,而它是不需要的;

2 end-to-end的网络,能够同时学习到图像的global和local的features;

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值