自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(38)
  • 收藏
  • 关注

原创 Armstrong基础拓扑学读书笔记——第二章:连续性

2.1 开集和闭集拓扑空间(定义2.1) XXX是一个拓扑空间,如果它存在一组非空子集(称为开集)族,满足无限个开集的并是开集有限个开集的交是开集全集和空集是开集无限开集是不是开集的例子。设XXX是定义在R2R^2R2上的欧式拓扑,开集取常规定义下的开圆,取其中无数个开集(x,y)∣x2+y2<1n,n=1,2,⋯{(x,y)|x^2+y^2<\frac{1}{n}}, n=1,2,\cdots(x,y)∣x2+y2<n1​,n=1,2,⋯。显然这无限个开集的交是原

2020-06-05 10:47:36 260

原创 Multi-scale Features for Approximate Alignment of Point-based Surfaces论文阅读

问题给定一个点云描述(P={(pi,ni)}i∈I\mathcal{P}=\{(\mathbf{p}_{i}, \mathbf{n}_{i})\}_{i \in \mathcal{I}}P={(pi​,ni​)}i∈I​,其中pi\mathbf{p}_ipi​是点的位置,ni\mathbf{n}_{i}ni​是点的法向)的曲面(surfel cloud),求曲面特征。基本思路先对曲面做不同尺...

2020-03-30 16:54:31 55

原创 Mesh Saliency论文阅读

问题判定mesh上各点的“重要程度”,这里的重要程度,基本上是指在不同尺度(分辨率)下,几何特征的重要程度。基本思想在求解各点的平均曲率基础上,计算该点平均曲率在邻域内的显著性。类似于二维图像中金字塔的方法,建立三维模型的金字塔。算法假设我们已经计算得到了三维模型每个点上的平均曲率C(v)\mathscr{C}(v)C(v),以高斯函数为权重(实际上就是一个带权的邻域,但通过全局计算,避...

2020-03-26 02:21:13 67

原创 Blowing Bubbles论文阅读

问题给定一个三角形网格,给出各个点的特征,这些特征需要体现各个点的几何属性基本思路方法来自于不同分辨率(Multi-resolution)的思想。想象在每个需求解特征的点上吹泡泡,泡泡的边缘和模型相交,形成不同的交线。通过对这些交线数量、长度、外角(体现区域的曲率)等,体现了该点上的特征。因此,接下来先介绍作者使用了哪些特征,再介绍实践中如何求取这些交线。特征数量第一个特征是交...

2020-03-25 18:47:53 83

原创 集异璧摘录:pq系统-加法-乘法-合数-素数

加法公理:x-qxp-规则:xqypz →\rightarrow→ x-qypz-解释:q为equal,p为plus,公理表示(x+1)=x+1,规则表示如果x=y+z,则(x+1)=y+(z+1)乘法公理:xqxt-规则:xqytz →\rightarrow→ xyqytz-解释:q为equal,t为times合数公理:xqxt-规则1:xqytz →\rightarrow→...

2019-05-18 22:12:48 60

原创 SPPR阅读笔记:单张图片的3D平面重建

目的输入一张图片,得到图片上为平面的部分,并给出平面的三维信息(单位法向)。大致过程这是一个二阶段的学习。第一阶段为从单张图片中得到不同平面的分割,第二阶段为对不同的分割估计平面方程。但两个阶段是一起训练的,因此也是end-to-end manner。训练时,需要包含每张图片每个像素所属平面区域和像素单位法向信息。分割统一encode到embedding的特征。判断每一像素是否为...

2019-05-06 22:49:43 240

原创 The Perfect Match阅读笔记:平滑密度的3D点云拼接

目的不同点云片片之间的拼接大致过程对每个interest point构建小邻域。在这个邻域内生成局部标架(LRF, Local Reference Frame)做对齐。此步骤使用了协方差矩阵特征分解的方法。此步骤保证了旋转不变性。将小邻域放入一个32*32*32的voxel中,其中点云中的每个点都按高斯分布影响着邻近的voxel。此步骤的方法是平滑密度体素化(SDV, Smooth...

2019-05-06 22:46:50 816

原创 GeoNet阅读笔记:点云分析上的深度测地网络

目的点和邻近点的测地线距离估计。得到这样的估计后,我们求一个点的邻域时,就可以忽略那些欧氏距离很近,但测地线距离很远的点,从而减小误差。大概过程测地距离估计得到Ground Truth:对每个点xix_ixi​求出以rrr为半径的邻域Br(xi)B_r(x_i)Br​(xi​),对邻域内的每个点求测地距离。Encoder-Decoder部分:特征提取。基于PointNet++,得到...

2019-05-06 22:42:27 213 1

原创 iai_kinect2+Linux Mint 18.2安装踩坑记录

参考教程https://github.com/code-iai/iai_kinect2前面的工作需要已经安装好ROS,教程可见 https://blog.csdn.net/yucong96/article/details/88865721需要已经安装好freenect2,教程可见 https://github.com/OpenKinect/libfreenect2激活ROS环境建立RO...

2019-03-28 12:16:40 116

原创 ROS+Linux Mint 18.2安装踩坑记录

参考教程ROS官网安装教程选择国内镜像由于ROS官方仓库下载非常慢,因此选择国内的中科大镜像。原教程中给出的镜像路径为sudo sh -c '. /etc/lsb-release && echo "deb http://mirrors.ustc.edu.cn/ros/ubuntu/ $DISTRIB_CODENAME main" > /etc/apt/sources....

2019-03-28 11:43:47 514

原创 SGPN阅读笔记:相似性聚类的点云模型分割

简介这也是一篇在PointNet基础上进行模型分割的论文。它的流程是,首先使用PointNet和PointNet++找到每个点对应的特征。然后对特征两两求差,得到相似性矩阵,它表示了一对点是不是属于同一类物体。除相似性矩阵外,SGPN还有一个置信向量,来表示点是否属于模型的一部分(而不是背景);以及一个语义分割矩阵,给同一类的部分打上同样的label。方法SGPN简单且符合直观,它的结构如下...

2019-03-27 23:26:42 383

原创 PU-Net阅读笔记:点云的上采样

简述PU-Net在点云上进行上采样,即输入一个点云,输出一个更密的点云,且它落在输入点云隐含的几何体(比如表面)上。点云上采样和图片的超分辨率很像,但因为是三维的点而不是二维的像素,因此也有点云不规则、无顺序的一系列缺陷。PU-Net的核心思想,是学习到每个点多个粒度(从局部到全局)下的特征,再在特征空间中扩大点集,最后将扩大的点集映射回三维。提取特征的方法基于PointNet++。邻域选择...

2019-03-26 22:52:52 1585

原创 简述Shadow Mapping和Shadow Volume的新方法

简介阴影渲染在真实感图形渲染中非常重要,它作为一种视觉上的提示,将场景的空间结构和物体的相对关系反馈给用户。研究表明,阴影的有无对用户认知空间物体位置具有重要作用[1]。然而,实时、高清的阴影渲染始终是一个有挑战性的问题。早年的计算机图形学研究中,两种高效的阴影渲染技术被提了出来,分别是阴影体算法(Shadow Volume Algorithm)[2]和阴影深度映射(Shadow Depth M...

2019-03-23 22:20:39 439

原创 踩坑:pytorch中eval模式下结果远差于train模式

首先,eval模式和train模式得到不同的结果是正常的。我的模型中,eval模式和train模式不同之处在于Batch Normalization和Dropout。Dropout比较简单,在train时会丢弃一部分连接,在eval时则不会。Batch Normalization,在train时不仅使用了当前batch的均值和方差,也使用了历史batch统计上的均值和方差,并做一个加权平均(mom...

2019-03-18 23:44:37 8908 24

翻译 PointNet阅读笔记

基本上翻译自[1]:Pointnet: Deep learning on point sets for 3d classification and segmentation,加了一点个人理解。Introduction典型的卷积结构需要规则的数据结构,比如图像或者voxel模型。对于点云、mesh这样的非规则数据结构,往往就会将它们转化成voxel模型或多视角下的二维图片,再用卷积进行处理。二维...

2019-03-05 23:42:06 240

原创 正义之心读书笔记:第10章 蜂巢开关——投入群体的能力

集体欢腾e.g. 部队里长时间的踢正步训练,给融入集体仪式的士兵一种比生命更巨大的、超出自我的幸福感。e.g. 马其顿方阵人类是有条件的蜂巢式生物,在特殊情况下,我们可以在更大的群体中放弃自我利益并忘却自我。这种能力作者称之为“蜂巢开关”。集体情绪在两个领域使人暂时性地全身心投入:神圣域,人们迷失自我并以集体利益为先世俗域,人们关心财富、健康以及名誉,但又被不知名的更崇高、更高尚的感...

2019-02-20 16:58:26 203

原创 正义之心读书笔记:第9章 我们自私,我们也无私——支持群体选择的证据

用个人利己主义解释道德心理是不完整的人通常是自私和寻找私利的。但人也具有群体归属感,表现出群体认同感。群体归属的来源:群体选择理论。群体选择是自然选择的一种,成功联合和合作的群体战胜了无法联合的群体,被大自然保留下来。群体选择理论的波折达尔文提出了群体选择理论。例子:更无私、更忠诚的部落能够战胜不团结的部落反对的理由:搭便车问题。在更忠诚的部落里,如果存在自私的人,他们更容...

2019-02-19 23:42:27 123

原创 正义之心读书笔记:第7章 自由和保守主义的本质——5大道德基础

人不是经济人经济人:在做人生决定时对各种选择都作了充分的考虑,且仅有一个影响因素:个人私利。人无论做任何事都要用最低的成本换取最丰厚的回报。实际上,人有一系列的道德基础。在作者看来,主要有5类:关爱、公平、忠诚、权威和圣洁。先于经验的组织人类特性可以是先天的,但并非固有或普遍一致的。大脑像一本书,基因起草了初稿。婴儿出生时,没有章节是完成的,也没有章节是空白的,都需要儿童成长过程去...

2019-02-14 18:37:13 147

原创 正义之心读书笔记:第6章 走出真滋味餐厅——正义之心的萌芽

多元主义不是说“怎样都行”而是对道德一元论的批判e.g. 人类都有5种味觉感官,但不喜欢同样的食物道德科学的诞生启蒙运动思想家的分歧:道德超越了人性,来自理智的本性,可以推理演绎出来(柏拉图)道德是人性的一部分,必须靠观察习得(休谟)休谟,《人性论》情感是道德生活的驱动力,而推理带有偏见且软弱无力道德是多样的道德基于多种情感道德光谱两个维度:共情...

2019-02-07 21:28:19 92

原创 正义之心读书笔记:第5章 超越怪异——道德疆域的多样性

WEIRD文化几乎所有的心理学研究都是在人类中极少数,即“WEIRD人群”中进行的:W:Western,西方的E:Educated,有教养的I:Industrial,工业化的R:Rich,富裕的D:Democratic,民主的“WEIRD”文化的特征:越属于这类人,越会认为世界上分布着独立的个体,而非各种关系。“WEIRD”哲学家们推衍的道德体系都是个人主义、基于规则和普...

2019-02-06 20:38:04 158

原创 正义之心读书笔记:第4章 追求选票的政客——格劳孔的5大实验理论

格劳孔的问题思维实验:声名狼藉的正义者,和深孚众望的不义者,我们选择成为哪个?格劳孔的观点:人们的行为符合道德仅仅因为他们害怕自己不道德行为被抓到的后果,特别是对他们声誉的损害。苏格拉底(柏拉图)的观点:正义之于人相当于正义之于城邦。不义的城邦中,一部分人之所得为另一部分人之所失,为了不内讧,只有让追求正义的哲学家处于统治地位。因此,对人而言,也需要让理性占统治地位。(这都是些什么玩意儿)...

2019-02-03 20:44:00 146

原创 正义之心读书笔记:第3章 大象的力量——道德认知的6大发现

对自以为是的训诫直觉在先e.g. 自发地为错误编造故事(借口)e.g. 催眠植入的感觉比理性推理在判断中占比更重发现1:大脑的评判迅捷而持久冯特:情感优先。正面或负面感觉的细微闪动,能让我们准备好接近或回避某些事物。扎乔克:无意义的涂写仍能激发感情。曝光效应:把熟悉的事物标记为好的事物。发现2:社会和政治判断尤为发自直觉情感引导:一闪而过的情感,左右意识的判断e.g....

2019-01-29 23:29:43 135

原创 正义之心读书笔记:第2章 直觉之狗与理性之尾——道德的两种认知过程

唯理(性)论错觉人的心理被分成了几个部分,不同的部分会相互冲突e.g. 柏拉图:理性完美的大脑,激情冲动的躯干,连接两者的脖子三种模式柏拉图:理性应为统治者休谟:理性是激情的仆人杰弗逊:理性和感情共同统治道德直觉来源于进化,情感是道德的基础达马索腹内侧前额叶皮层(大脑某一区域,简称vmPFC)受损的病人,善感度几乎为0。这类病人智商没有问题,可以通过科尔伯格的道...

2019-01-27 11:13:13 303

原创 正义之心读书笔记:第1章 天生与后天习得——道德的起源

道德的起源先天形成:先天论者后天养成:经验主义者理性主义皮亚杰足够的大脑+足够的经验+理性 →\rightarrow→ 道德e.g. 儿童对体积守恒的理解科尔伯格一系列道德难题,来量化道德推理六阶段递进前社会惯例:肤浅理由判断物理世界社会惯例:善于理解甚至利用规则和社会惯例(服从权威,极少质疑权威的合法性)后社会惯例:思考权威的本质、正义的涵义、规则法律背...

2019-01-27 11:06:56 256

原创 Colorization论文阅读——Let there be Color!

论文Let there be Color!: Joint End-to-end Learning of Global and Local Image Priors for Automatic Image Colorization with Simultaneous Classification发表于SIGGRAPH 2016方法首先,图片的颜色空间为LAB颜色空间,其中L代表亮度,AB分别...

2018-12-25 14:08:56 451

原创 应用数学课堂笔记——常微分方程数值解

常微分方程数值方法差分法、有限元法、谱方法等。这里只介绍显式欧拉法。欧拉法及其变种问题描述:在x∈[a,b]x \in [a,b]x∈[a,b]求解yyy,满足y′=f(x,y),y(x0)=y0y&amp;amp;#x27;= f(x,y), y(x_0)=y_0y′=f(x,y),y(x0​)=y0​将[a,b][a,b][a,b]等分成NNN份,每份长度为hhh,x0=a,xi=a+i...

2018-10-25 21:07:20 346

原创 A simple survey on inpainting

From Wikipedia, inpainting is the process of reconstructing lost or deteriorated parts of images and videos. In my opinion, besides 2D objects, 3D models or images with depth can also be inpainted. In...

2018-10-18 13:20:55 362

原创 应用数学课堂笔记(一)——欧拉方程

引理:设f(x)∈C[x0,x1],g(x)∈C0∞[x1,x2]f(x) \in C[x_0,x_1], g(x) \in C_0^{\infty}[x_1,x_2]f(x)∈C[x0​,x1​],g(x)∈C0∞​[x1​,x2​],其中C0∞C_0^{\infty}C0∞​表示在边界上导数为0,中间无限次可导。如果有∫x1x2f(x)g(x)dx=0,∀y∈C0∞[x1,x2]\int_...

2018-09-21 00:03:50 2320

原创 《强化学习Sutton》读书笔记(七)——列表法的计划与学习(Planning and Learning with Tabular Methods)

此为第八章 Planning and Learning with Tabular Methods 。在上述章节中,我们已经看到了DP是基于模型 (Model-Based) 的,而MC和TD是模型无关的 (Model-Free) 。基于模型的方法中,Planning(下文定义这个词)是最主要的一步;而对于模型无关的问题,Learning是最核心的步骤。Planning和Learning有很多异同...

2018-09-12 14:45:42 522

原创 《强化学习Sutton》读书笔记(六)——n步Bootstrapping(n-step Bootstrapping)

此为《强化学习》第七章 n-step Bootstrapping 。nnn步Bootstrapping是MC和TD(0)的综合。随着对参数nnn的调整,我们可以看到TD是如何过渡到MC的。而最佳的方法往往就是介于TD和MC之间。nnn步TD估计在上一章的TD(0)方法中,我们有 v(St)←v(St)+α(Gt−v(St))v(St)←v(St)+α(Gt−v(St))v(S_...

2018-09-07 19:13:47 586

原创 《强化学习Sutton》读书笔记(五)——时序差分学习(Temporal-Difference Learning)

此为《强化学习》第六章 Temporal-Difference Learning 。时序差分学习 (Temporal-Difference Learning, TD) 是强化学习的核心。TD学习是蒙特卡洛MC法和动态规划DP法的综合,它可以像MC那样,不需要知道环境的全部信息,通过交互就能学习;同时,它也可以像DP那样,在(其他值函数)估计的基础上进行估计,从而不需要求解完整个事件(Episo...

2018-09-06 13:09:16 1167

原创 《强化学习Sutton》读书笔记(四)——蒙特卡洛方法(Monte Carlo Methods)

此为《强化学习》第五章。上一节中的动态规划方法需要知道整个environment的信息,但有的时候,我们只有经验 (Experience) (比如一组采样),而对environment没有任何其他知识;或者我们有一个可以交互的黑盒,通过黑盒可以进行仿真得到experience,但具体黑盒内的概率模型也是不知道的(或者非常难以计算的)。这种情况下,动态规划方法不再适用,蒙特卡洛方法 (Monte...

2018-09-05 13:25:39 1202 2

原创 《强化学习Sutton》读书笔记(三)——动态规划(Dynamic Programming)

此为《强化学习》第四章。策略评估策略评估 (Policy Evaluation) 首先考虑已知策略π(a|s)π(a|s)\pi(a|s),求解vπ(s)vπ(s)v_\pi(s)。根据上一节中状态值函数的Bellman等式,有 vπ(s)=∑aπ(a|s)∑s′∑rp(s′,r|s,a)[r+γvπ(s′)]vπ(s)=∑aπ(a|s)∑s′∑rp(s′,r|s,a)[r+γvπ(...

2018-09-04 13:40:44 1005

原创 《强化学习Sutton》读书笔记(二)——有限马尔科夫决策过程(Finite Markov Decision Processes)

此为《强化学习》第三章。用户-环境接口马尔科夫决策过程 (Markov Decision Process, MDP) 是建模在交互中学习的一种直观框架。学习者和决策者被称为用户 (Agent) ,其他和用户无关的但能和用户进行交互的部分被称为环境 (Environment) 。第ttt时刻,用户处于状态StStS_t,得到奖励RtRtR_t,在某个策略下选择了行为AtAtA_t,从而进...

2018-09-03 16:05:30 996

原创 《强化学习Sutton》读书笔记(一)——多臂赌博机(Multi-armed Bandits)

此为《强化学习》第二章。多臂赌博机问题描述问题描述略。理想状态下,如果我们可以知道做出行为aaa时得到的期望价值,那问题就结了,按期望选择最大的就好了。它的表达式为: q∗(a)≐E[Rt|At=a]q∗(a)≐E[Rt|At=a]q_*(a) \doteq \mathbb{E}[ R_t | A_t = a ]其中,选择行为aaa的理论期望价值q∗(a)q∗(a)q_*(a)...

2018-09-02 16:12:29 1546

原创 《共轭梯度法》读书笔记(三)——共轭梯度法

共轭梯度法共轭方向法中,最大的问题在于寻找一组彼此独立的向量u1,...,unu1,...,unu_1,...,u_n,如果选取不当,那么和高斯消元法就没有区别了。共轭梯度法 (Conjugate Gradient)实际上是一种特殊的共轭方向法,它取ui=r(i)ui=r(i)u_i = r_{(i)}。首先为何残差是彼此独立的?首先,由于共轭方向法每次(A正交地)消除了一个维度上的误差,...

2018-09-01 15:47:27 3748

原创 《共轭梯度法》读书笔记(二)——共轭方向法

最速下降法的缺陷上一节中已经提到了最速下降法容易走出“之”字形的路线,这些路线方向虽然都是梯度,但非常类似。如果每次的路线都是彼此正交的,那么即使没有选择局部变化率最大的梯度,也能够很快收敛到正解,如下图。 共轭方向法的intuition这就引出了共轭方向法 (Conjugate Directions)。一种理想但无法实现的共轭梯度法我们选择一组正交的搜索方向,记为dj(j=...

2018-08-31 16:45:49 4499 3

原创 《共轭梯度法》读书笔记(一)——最速下降法

求解问题二次型 (Quadratic form)是一个形如f(x)=12xTAx−bTx+cf(x)=12xTAx−bTx+cf(x) = \frac{1}{2}x^TAx - b^Tx + c的标量二次方程,如果AAA是一个n∗nn∗nn*n对称正定阵,那么f(x)f(x)f(x)的最小值在Ax=bAx=bAx=b时取到。计算如下: f′(x)=Ax−b=0f′(x)=Ax−b=0f'(...

2018-08-31 15:22:25 2476 3

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除