离散数学实验一——关系

离散数学实验一——关系

一、预习内容:

1、自反性:从给定的关系矩阵来断判关系R是否为自反是很容易的。若M(R的关系矩阵)的主对角线元素均为1,则R是自反关系;若M(R的关系矩阵)的主对角线元素均为0,则R是反自反关系;若M(R的关系矩阵)的主对角线元素既有1又有0,则R既不是自反关系也不是反自反关系。本算法可以作为判等价关系算法的子程序给出。
2、对称性:从给定的关系矩阵来判断关系R是否为对称是很容易的。若M(R的关系矩阵)为对称矩阵,则R是对称关系;若M为反对称矩阵,则R是反对称关系。因为R为对称的是等价关系的必要条件,所以,本算法可以作为判等价关系算法的子程序给出。
3、传递性:从给定的关系矩阵来断判关系R是否为传递是很容易的。若M(R的关系矩阵)为传递矩阵,则R是传递关系;若M为非传递矩阵,则R是非传递关系;本算法可以作为判等价关系算法的子程序给出。

二、实验目的与要求(及主要实验仪器、设备):

1.通过实验,帮助学生更好地掌握计算机科学技术常用的离散数学中的概念、性质和运算;
2. 通过实验提高学生编写实验报告、总结实验结果的能力;
3. 使学生具备程序设计的思想,能够独立完成简单的算法设计和分析。
实验环境:软件:vc++6.0 ,硬件:电脑

三、实验原理(方法与与原理分析):

1 自反性定义
(1)若, 则称R在A上是自反的。
(2)若,则称R在A上是反自反的。
2 对称性定义
设R为A上的二元关系,
(1)若,则称R为A上的对称关系
(2) 若,则称R为A上的反对称关系
3 传递性定义
设R为A上的二元关系,若 ,则称R为A上的传递关系

四、实验步骤(程序代码与实验过程):

#include<iostream.h>
#include<stdio.h>
#include<stdlib.h>
#include<conio.h>
#include<string.h>
#define M 100
char get_element(char p)//输入结点序列函数
{
printf(“输入集合的元素(不能有空格):”);
gets§;
fflush(stdin);
return p;
}
int get_position(char ch,char point){
int i;
for(i=0;
(point+i);i++)
if(
(point+i)ch)
return i;
return 0;
}
void get_relation(int (a)[M],char p)
{
int k1,k2;
char ch1,ch2;
printf("输入关系的各个序偶(以<
,
>时结束):\n");
while(1)
{
printf("<");
ch1=getche();
printf(",");
ch2=getche();
printf(">\n");
if(ch1
’)break;
k1=get_position(ch1,p);
k2=get_position(ch2,p);
a[k1][k2]=1;
}
}
void output_relat_array(int (*a)[M],int arry_w)//输出关系矩阵
{
int i,j;
for(i=0;i<arry_w;i++)
{
for(j=0;j<arry_w;j++)
printf("%4d",a[i][j]);
printf("\n");
}
}
void output_relate(int (*a)[M],int arry_w,char *p)
//关系矩阵中如果有元素为1,则根据该序号去结点序列中查找其相应结点
{
int i,j;
int count=0;

printf("{");
for(i=0;i<arry_w;i++)
    for(j=0;j<arry_w;j++)
       if(a[i][j]==1){ printf("<%c,%c>,",*(p+i),*(p+j));count++;}
printf("\b}");
printf("\n");

}

int ZF(int (*a)[M],int n)
{
int flag1 = 1;
for(int i = 0; i <n; i++)
//只要有一个对角元素为0就不具有自反性
{
if(!a[i][i])
{
flag1 = 0;
break;
}
}
return flag1;
}
int FZF(int (*a)[M],int n) //反自反
{
int flag2 = 1;
for(int i = 0; i < n; i++)
{
//只要有一个对角元素为1就不具有反自反性
if(a[i][i])
{
flag2 = 0;
break;
}
}
return flag2;
}

int DC(int (*a)[M],int n) //对称
{
int flag3 = 1;
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
{ //矩阵中对称元素都相等则具有对称性
if(a[i][j] != a[j][i])
flag3 = 0;
break;
}
return flag3;
}
int FDC(int (*a)[M],int n) //反对称
{
int flag4 = 1;
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
//矩阵中对称元素中有相等的1则不具有反对称性
if(a[i][j] && a[i][j] == a[j][i] && i != j)
{
flag4 = 0;
break;
}
return flag4;
}
int CD(int (*a)[M],int n) //传递
{
int flag5 = 1;
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
for(int k = 0; k < n; k++)
//判断是否满足传递关系
if(a[i][j] && a[j][k] && !a[i][k])
{
flag5 = 0;
break;
}
return flag5;
}
int main()
{
int a[M][M]={0};
char point[M];
int stlen;
char *p;
p=get_element(point);//输入结点p取得其起始位置
stlen=strlen(point);
get_relation(a,p);//根据输入的关系的序偶构建关系矩阵a
output_relate(a,stlen,p);
printf("\n关系矩阵为:\n");
output_relat_array(a,stlen);
cout<<“该关系具有的性质:”<<endl;
if(ZF(a,stlen))
{
cout<<“自反性”<<endl;
}

if(FZF(a,stlen))
    {
        cout<<"反自反性"<<endl;
    }
if(DC(a,stlen))
{
    cout<<"对称性"<<endl;
}
if(FDC(a,stlen))
{
    cout<<"反对称性"<<endl;
}
if(CD(a,stlen))
{
    cout<<"传递性"<<endl;
}
return 0; 

}

五、实验结果(数据分析与结论):

在这里插入图片描述

六、问题讨论:

问:自反,反自反,对称,反对称,传递都有什么特点?
答:1.自反,就是如果集合A中的每个元素x,都有xRx,也就是说,这些关系里,a = b的个数应该是A.size()个。
2.反自反,就是集合中的每个元素都没有xRx,也就是说,再没有一个是a,b相同的。
3.对称,就是如果有关系<a, b>,一定有关系<b, a>(a ≠ b)
4.反对称,就是如果有关系<a, b>,就一定没有关系<b,a>(a ≠ b)
5.传递,就是如果有关系<a, b>, <b, c>,那么一定有<a, c>

  • 1
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

轩辕椿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值