EM@三角恒等变换@积化和差@和差化积

abstract

  • 三角函数和差化积,积化和差公式的简单推导

refs

铺垫:和角公式

  1. cos ⁡ ( x + y ) = cos ⁡ x cos ⁡ y − sin ⁡ x sin ⁡ y \cos(x+y)=\cos x\cos y -\sin x\sin y cos(x+y)=cosxcosysinxsiny= A − B A-B AB
  2. cos ⁡ ( x − y ) = cos ⁡ x cos ⁡ y + sin ⁡ x sin ⁡ y \cos(x-y)=\cos x\cos y+\sin x\sin y cos(xy)=cosxcosy+sinxsiny= A + B A+B A+B
  3. sin ⁡ ( x + y ) = sin ⁡ x cos ⁡ y + cos ⁡ x sin ⁡ y \sin(x+y)=\sin x\cos y+\cos x\sin y sin(x+y)=sinxcosy+cosxsiny= C + D C+D C+D
  4. sin ⁡ ( x − y ) = sin ⁡ x cos ⁡ y − cos ⁡ x sin ⁡ y \sin(x-y)=\sin x\cos y-\cos x\sin y sin(xy)=sinxcosycosxsiny= C − D C-D CD

积化和差

  • cos ⁡ x cos ⁡ y \cos {x} \cos {y} cosxcosy= cos ⁡ ( x − y ) + cos ⁡ ( x + y ) 2 {\cos({x} -{y} )+\cos({x} +{y} ) \over 2} 2cos(xy)+cos(x+y)
  • $\sin {x} \sin {y} = = ={\cos({x} -{y} )-\cos({x} +{y} ) \over 2}$
  • $\sin {x} \cos {y} = = ={\sin({x} +{y} )+\sin({x} -{y} ) \over 2}$
  • $ \cos {x} \sin {y} = = ={\sin({x} +{y} )-\sin({x} -{y} ) \over 2}$
  • $\tan {x} \tan {y} = = =\frac{\sin{x}}{\cos{x}}\frac{\sin{y}}{\cos{y}} = = ={\frac {\cos({x} -{y} )-\cos({x} +{y} )}{\cos({x} -{y} )+\cos({x} +{y} )}}$

推导

  • A = ( 1 ) + ( 2 ) 2 A=\frac{(1)+(2)}{2} A=2(1)+(2)
  • B = ( 2 ) − ( 1 ) 2 B=\frac{(2)-(1)}{2} B=2(2)(1)
  • C = ( 3 ) + ( 4 ) 2 C=\frac{(3)+(4)}{2} C=2(3)+(4)
  • D = ( 3 ) − ( 4 ) 2 D=\frac{(3)-(4)}{2} D=2(3)(4)

和差化积

  • 这里讨论的是同名三角函数的和差化积公式(同名)

  • sin ⁡ x ± sin ⁡ y = 2 sin ⁡ ( x ± y 2 ) cos ⁡ ( x ∓ y 2 ) \sin {x} \pm \sin {y} =2\sin \left({\frac {{x} \pm {y} }{2}}\right)\cos \left({\frac {{x} \mp {y} }{2}}\right) sinx±siny=2sin(2x±y)cos(2xy)

  • cos ⁡ x + cos ⁡ y = 2 cos ⁡ ( x + y 2 ) cos ⁡ ( x − y 2 ) \cos {x} +\cos {y} =2\cos \left({\frac {{x} +{y} }{2}}\right)\cos \left({\frac {{x} -{y} }{2}}\right) cosx+cosy=2cos(2x+y)cos(2xy)

  • cos ⁡ x − cos ⁡ y = 2 sin ⁡ ( x + y 2 ) sin ⁡ ( x − y 2 ) { \cos {x} -\cos {y} =2\sin \left({\frac {{x} +{y} }{2}}\right)\sin \left({\frac {{x} -{y} }{2}}\right)} cosxcosy=2sin(2x+y)sin(2xy)

  • tan ⁡ x ± tan ⁡ y = sin ⁡ ( x ± y ) cos ⁡ x cos ⁡ y { \tan {x} \pm \tan {y} ={\frac {\sin({x} \pm {y} )}{\cos {x} \cos {y} }}} tanx±tany=cosxcosysin(x±y)

换元推导

  • 以积化和差公式为基础变形,并使用代换:即
    • x + y = p x+y=p x+y=p(1)
    • x − y = q x-y=q xy=q(2)
    • 两式相加: 2 x = p + q 2x=p+q 2x=p+q;即 x = p + q 2 x=\frac{p+q}{2} x=2p+q(3)
    • 两式相减 2 y = p − q 2y=p-q 2y=pq;即 y = p − q 2 y=\frac{p-q}{2} y=2pq(4)
  • 将和差化积公式组变形,得过渡公式组
    • cos ⁡ ( x − y ) + cos ⁡ ( x + y ) {\cos({x} -{y} )+\cos({x} +{y} ) } cos(xy)+cos(x+y)= 2 cos ⁡ x cos ⁡ y 2\cos {x} \cos {y} 2cosxcosy
    • cos ⁡ ( x − y ) − cos ⁡ ( x + y ) {\cos({x} -{y} )-\cos({x} +{y} ) } cos(xy)cos(x+y)=$2\sin {x} \sin {y} $
    • sin ⁡ ( x + y ) + sin ⁡ ( x − y ) {\sin({x} +{y} )+\sin({x} -{y} )} sin(x+y)+sin(xy)=$2\sin {x} \cos {y} $
    • sin ⁡ ( x + y ) − sin ⁡ ( x − y ) {\sin({x} +{y} )-\sin({x} -{y} ) } sin(x+y)sin(xy)=$2\cos {x} \sin {y} $
  • 这组公式形式上已经很接近和差化积的形式了,我们还需要将 x , y , x − y , x + y x,y,x-y,x+y x,y,xy,x+y表示 p , q p,q p,q的表达式,即分别代入(1),(2),(3),(4)即得和差化积公式
    • cos ⁡ q + cos ⁡ p = 2 cos ⁡ p + q 2 cos ⁡ p − q 2 \cos{q}+\cos{p}=2\cos\frac{p+q}{2}\cos\frac{p-q}{2} cosq+cosp=2cos2p+qcos2pq
    • cos ⁡ q − cos ⁡ p = 2 sin ⁡ p + q 2 sin ⁡ p − q 2 \cos{q}-\cos{p}=2\sin\frac{p+q}{2}\sin\frac{p-q}{2} cosqcosp=2sin2p+qsin2pq
    • sin ⁡ p + sin ⁡ q = 2 sin ⁡ p + q 2 cos ⁡ p − q 2 \sin{p}+\sin{q}=2\sin\frac{p+q}{2}\cos\frac{p-q}{2} sinp+sinq=2sin2p+qcos2pq
    • sin ⁡ p − sin ⁡ q = 2 cos ⁡ p + q 2 sin ⁡ p − q 2 \sin{p}-\sin{q}=2\cos\frac{p+q}{2}\sin\frac{p-q}{2} sinpsinq=2cos2p+qsin2pq

向量运算推导

  • 这里用向量几何的方式推导和差化积公式

  • 以直角坐标系 x O y xOy xOy的原点为圆心作单位圆,并任意取圆上两点作向量 O P → \overrightarrow{OP} OP = ( cos ⁡ α , sin ⁡ α ) (\cos\alpha,\sin\alpha) (cosα,sinα), O Q → \overrightarrow{OQ} OQ = ( cos ⁡ β , sin ⁡ β ) (\cos\beta,\sin\beta) (cosβ,sinβ)

    • 取弧 A B ⌢ \overset{\huge\frown}{AB} AB的中点 M M M,则 M ( cos ⁡ α + β 2 , sin ⁡ α + β 2 ) M(\cos\frac{\alpha+\beta}{2},\sin\frac{\alpha+\beta}{2}) M(cos2α+β,sin2α+β),即 O M → \overrightarrow{OM} OM = ( cos ⁡ α + β 2 , sin ⁡ α + β 2 ) (\cos\frac{\alpha+\beta}{2},\sin\frac{\alpha+\beta}{2}) (cos2α+β,sin2α+β)
    • 连结 P Q , O M PQ,OM PQ,OM,设它们相交于点 N N N,则点 N N N为线段 P Q PQ PQ的中点 O N ⊥ P Q ON\perp{PQ} ONPQ
    • ∠ x O M \angle{xOM} xOM= α + β 2 \frac{\alpha+\beta}{2} 2α+β; ∠ M O Q \angle{MOQ} MOQ= α − β 2 \frac{\alpha-\beta}{2} 2αβ,它们分别是 α , β \alpha,\beta α,β的中间角, α , β \alpha,\beta α,β差角的半角
  • 中点坐标法:

    • 根据 O N → \overrightarrow{ON} ON = cos ⁡ α − β 2 \cos\frac{\alpha-\beta}{2} cos2αβ ⋅ \cdot O M → {\overrightarrow{OM}} OM ,以及, O N → = 1 2 ( O P → + O Q → ) \overrightarrow{ON}=\frac{1}{2}(\overrightarrow{OP}+\overrightarrow{OQ}) ON =21(OP +OQ )
      • O N → \overrightarrow{ON} ON = ( cos ⁡ α − β 2 cos ⁡ α + β 2 , cos ⁡ α − β 2 sin ⁡ α + β 2 ) (\cos\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2},\cos\frac{\alpha-\beta}{2}\sin\frac{\alpha+\beta}{2}) (cos2αβcos2α+β,cos2αβsin2α+β)
      • O N → \overrightarrow{ON} ON = ( P x + Q x 2 , P y + Q y 2 ) (\frac{P_{x}+Q_{x}}{2},\frac{P_{y}+Q_{y}}{2}) (2Px+Qx,2Py+Qy)= ( 1 2 ( cos ⁡ α + cos ⁡ β ) , 1 2 ( sin ⁡ α + sin ⁡ β ) ) (\frac{1}{2}(\cos\alpha+\cos\beta),\frac{1}{2}(\sin\alpha+\sin\beta)) (21(cosα+cosβ),21(sinα+sinβ))
    • 现在我们可以用两种形似表示 N N N的坐标:
      • ( cos ⁡ α + cos ⁡ β ) (\cos\alpha+\cos\beta) (cosα+cosβ)= 2 cos ⁡ α + β 2 cos ⁡ α − β 2 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} 2cos2α+βcos2αβ
      • ( sin ⁡ α + sin ⁡ β ) (\sin\alpha+\sin\beta) (sinα+sinβ)= 2 sin ⁡ α + β 2 cos ⁡ α − β 2 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} 2sin2α+βcos2αβ
      • β \beta β − β -\beta β代入,得 sin ⁡ α − sin ⁡ β \sin\alpha-\sin\beta sinαsinβ得化积公式
  • 投影法:

    • ∠ P Q O = ∠ O P Q \angle{PQO}=\angle{OPQ} PQO=OPQ= ϕ \phi ϕ, P Q PQ PQ延长线与 x x x轴交于点 T T T, ∠ Q T O = θ \angle{QTO}=\theta QTO=θ,则

    • β + θ \beta+\theta β+θ= ϕ \phi ϕ; α + ϕ + θ = π \alpha+\phi+\theta=\pi α+ϕ+θ=π,所以 θ = \theta= θ= = 1 2 ( π − ( α + β ) ) \frac{1}{2}(\pi-(\alpha+\beta)) 21(π(α+β)), cos ⁡ ( θ ) \cos(\theta) cos(θ)= sin ⁡ α + β 2 \sin\frac{\alpha+\beta}{2} sin2α+β

    • ∣ O P ∣ cos ⁡ α + ∣ P Q ∣ cos ⁡ θ = ∣ O Q ∣ cos ⁡ β |OP|\cos\alpha+|PQ|\cos\theta=|OQ|\cos\beta OPcosα+PQcosθ=OQcosβ

      • ∣ O P ∣ = ∣ O Q ∣ = 1 |OP|=|OQ|=1 OP=OQ=1, ∣ P Q ∣ = 2 ∣ N Q ∣ = 2 sin ⁡ α − β 2 ∣ O Q ∣ |PQ|=2|NQ|=2\sin\frac{\alpha-\beta}{2}|OQ| PQ=2∣NQ=2sin2αβOQ= 2 sin ⁡ α − β 2 2\sin\frac{\alpha-\beta}{2} 2sin2αβ

      • 所以 cos ⁡ α + 2 sin ⁡ α − β 2 sin ⁡ α + β 2 \cos\alpha+2\sin\frac{\alpha-\beta}{2}\sin\frac{\alpha+\beta}{2} cosα+2sin2αβsin2α+β= cos ⁡ β \cos\beta cosβ,

      • cos ⁡ α − cos ⁡ β \cos\alpha-\cos\beta cosαcosβ= − 2 sin ⁡ α − β 2 sin ⁡ α + β 2 -2\sin\frac{\alpha-\beta}{2}\sin\frac{\alpha+\beta}{2} 2sin2αβsin2α+β

总结

  • sin ⁡ x cos ⁡ y = sin ⁡ ( x + y ) + sin ⁡ ( x − y ) 2 { \sin {x} \cos {y} ={\sin({x} +{y} )+\sin({x} -{y} ) \over 2}} sinxcosy=2sin(x+y)+sin(xy) sin ⁡ x + sin ⁡ y = 2 sin ⁡ x + y 2 cos ⁡ x − y 2 { \sin {x} +\sin {y} =2\sin {\frac {{x} +{y} }{2}}\cos {\frac {{x} -{y} }{2}}} sinx+siny=2sin2x+ycos2xy

  • cos ⁡ x sin ⁡ y = sin ⁡ ( x + y ) − sin ⁡ ( x − y ) 2 { \cos {x} \sin {y} ={\sin({x} +{y} )-\sin({x} -{y} ) \over 2}} cosxsiny=2sin(x+y)sin(xy) sin ⁡ x − sin ⁡ y = 2 cos ⁡ x + y 2 sin ⁡ x − y 2 { \sin {x} -\sin {y} =2\cos {{x} +{y} \over 2}\sin {{x} -{y} \over 2}} sinxsiny=2cos2x+ysin2xy

  • cos ⁡ x cos ⁡ y = cos ⁡ ( x + y ) + cos ⁡ ( x − y ) 2 { \cos {x} \cos {y} ={\cos({x} +{y} )+\cos({x} -{y} ) \over 2}} cosxcosy=2cos(x+y)+cos(xy) cos ⁡ x + cos ⁡ y = 2 cos ⁡ x + y 2 cos ⁡ x − y 2 { \cos {x} +\cos {y} =2\cos {\frac {{x} +{y} }{2}}\cos {\frac {{x} -{y} }{2}}} cosx+cosy=2cos2x+ycos2xy

  • sin ⁡ x sin ⁡ y = − cos ⁡ ( x + y ) − cos ⁡ ( x − y ) 2 { \sin {x} \sin {y} =-{\cos({x} +{y} )-\cos({x} -{y} ) \over 2}} sinxsiny=2cos(x+y)cos(xy) cos ⁡ x − cos ⁡ y = − 2 sin ⁡ x + y 2 sin ⁡ x − y 2 { \cos {x} -\cos {y} =-2\sin {{x} +{y} \over 2}\sin {{x} -{y} \over 2}} cosxcosy=2sin2x+ysin2xy

  • 4
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值