AM@函数的多项式逼近表示@泰勒中值定理@泰勒多项式@泰勒公式

abstract

  • 函数逼近的概念
  • 低阶,高阶多项式函数逼近函数逼近
  • 函数的多项式逼近表示@泰勒中值定理@泰勒多项式@泰勒公式
  • 泰勒中值定理的两种形式和两种余项及其证明
    • Peano型
    • Lagrange型
  • 泰勒中值定理和拉格朗日中值定理的关系

引言

  • 对于一些较复杂的函数,为了便于研究,人们往往希望用一些简单的函数来近似表达
  • 由于用多项式表示的函数,只要对自变量进行有限次加,减,乘三种算术运算,就能够算出他们的函数值,因此多项式是一种理想的用来近似表达(复杂)函数

逼近

  • 用一个容易计算/结构简单的函数来来近似的表达一个复杂的函数,这种近似表达在数学上称为逼近(近似)

低阶近似

  • 由(一阶)微分近似计算公式 f ( x ) ≈ f ( x 0 ) + d y f(x)\approx f(x_0)+\mathrm{d}y f(x)f(x0)+dy= f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) f(x_0)+f'(x_0)(x-x_0) f(x0)+f(x0)(xx0)可知,当 x 0 = 0 x_0=0 x0=0, ∣ x − x 0 ∣ = ∣ x ∣ → 0 |x-x_0|=|x|\to{0} xx0=x0时,有 e x ≈ 1 + x e^{x}\approx{1+x} ex1+x, ln ⁡ ( 1 + x ) ≈ x \ln{(1+x)}\approx{x} ln(1+x)x

  • 上述例子使用简单的一次多项式近似表达非多项式函数的例子

    • 这里的近似局限于 x = 0 x=0 x=0附近(离 x = 0 x=0 x=0较远的点近似效果越差(误差越大))

    • 它们的共同特点是:在被近似函数近似函数在点 x = 0 x=0 x=0处的一阶导数值都是相同的

      • ( e x ) ′ ∣ x = 0 (e^{x})'|_{x=0} (ex)x=0= ( 1 + x ) ′ ∣ x = 0 (1+x)'|_{x=0} (1+x)x=0= 1 1 1
      • ( ln ⁡ ( 1 + x ) ) ′ ∣ x = 0 (\ln(1+x))'|_{x=0} (ln(1+x))x=0= ( x ) ′ ∣ x = 0 (x)'|_{x=0} (x)x=0= 1 1 1
  • 小结:这种一次多项式近似的精度不高,因为它差生的误差仅是关于 x x x的高阶无穷小

高阶逼近

  • 为了提高精度,可以尝试用更高次的多项式来逼近被近似函数,这个问题可以描述为:
    • f ( x ) f(x) f(x) x 0 x_0 x0处具有 n n n阶导数,试找出一个关于 ( x − x 0 ) (x-x_0) (xx0) n n n次多项式(不妨称为逼近多项式函数,简称逼近多项式或多项式)
      • p n ( x ) p_{n}(x) pn(x)= a 0 + a 1 ( x − x 0 ) + a 2 ( x − x 0 ) 2 + ⋯ + a n ( x − x 0 ) n a_0+a_1(x-x_0)+a_2(x-x_0)^2+\cdots+a_n(x-x_0)^{n} a0+a1(xx0)+a2(xx0)2++an(xx0)n= ∑ i = 0 n a i ( x − x 0 ) i \sum_{i=0}^{n}a_i(x-x_0)^{i} i=0nai(xx0)i(0)
    • 并且要求 p n ( x ) p_{n}(x) pn(x) f ( x ) f(x) f(x)是当 x → x 0 x\to{x_0} xx0时比 ( x − x 0 ) n (x-x_0)^{n} (xx0)n(0-1)高阶的无穷小 o ( ( x − x 0 ) n ) o((x-x_0)^{n}) o((xx0)n)
  • f ( x ) f(x) f(x) n n n次多项式 p n ( x ) p_{n}(x) pn(x)来逼近,则称 p n ( x ) p_{n}(x) pn(x) f ( x ) f(x) f(x) n n n阶逼近多项式
  • 泰勒公式使用使用多项式 p p p(polynominal)来逼近一个给定函数 f ( x ) f(x) f(x);
  • 我们用 p i p_i pi= p i ( x ) p_{i}(x) pi(x)来描述逼近 f ( x ) f(x) f(x)的过程:
  • 例如
    • 一阶近似:

      • p 1 = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) p_1=f(x_0)+f'(x_0)(x-x_0) p1=f(x0)+f(x0)(xx0)= a 0 + a 1 ( x − x 0 ) a_0+a_1(x-x_0) a0+a1(xx0)
    • 二阶近似:

      • p 2 = a 0 + a 1 ( x − x 0 ) + a 2 ( x − x 0 ) 2 p_2=a_0+a_1(x-x_0)+a_2(x-x_0)^2 p2=a0+a1(xx0)+a2(xx0)2
    • …(更高精度的逼近函数)

求解逼近多项式函数

  • 确定 f ( x ) f(x) f(x) n n n阶逼近多项式 p n ( x ) p_{n}(x) pn(x),就是要确定 p n ( x ) p_{n}(x) pn(x) n + 1 n+1 n+1个系数系数

多项式系数的确定

  • 由于被逼近函数 f ( x ) f(x) f(x)和逼近多项式函数 p n ( x ) p_{n}(x) pn(x)是逼近的或者相似的,则两个函数应该存在某些共性

  • 参考一阶微分近似,在点 x 0 x_0 x0处的函数值和导数对应相等:

    • p 1 ( x 0 ) = f ( x 0 ) p_{1}(x_0)=f(x_0) p1(x0)=f(x0),
    • p 1 ′ ( x 0 ) = f ′ ( x 0 ) p_1'(x_0)=f'(x_0) p1(x0)=f(x0)
  • 因此假设高阶逼近中 p n ( x ) p_{n}(x) pn(x) f ( x ) f(x) f(x) x 0 x_0 x0处的函数值和 i ( i = 1 , ⋯   , n ) i(i=1,\cdots,n) i(i=1,,n)阶导数都对应相同

    • P n ( i ) ( x 0 ) = f ( i ) ( x 0 ) P_n^{(i)}{(x_0)}=f^{(i)}{(x_0)} Pn(i)(x0)=f(i)(x0), i = 1 , ⋯   , n i=1,\cdots,n i=1,,n(1)
    • p n ( x 0 ) = f ( x 0 ) p_{n}(x_0)=f(x_0) pn(x0)=f(x0)(1-1)
  • 下面利用高阶求导公式 ( ( x − x 0 ) k ) ( n ) ((x-x_0)^{k})^{(n)} ((xx0)k)(n)= k ( k − 1 ) ⋯ ( k − n + 1 ) ( x − x 0 ) k − n k(k-1)\cdots{(k-n+1)}(x-x_0)^{k-n} k(k1)(kn+1)(xx0)kn= T k ( n ) ( x ) T_{k}^{(n)}(x) Tk(n)(x)来计算 p n p_{n} pn的各项和整体(在 x 0 x_0 x0处)导数

    • k < n k<n k<n T k ( n ) T_{k}^{(n)} Tk(n)=0
    • k = n k=n k=n时, T k ( n ) = n ! T_{k}^{(n)}=n! Tk(n)=n!
  • n n n阶逼近函数 p n ( x ) = ∑ i = 0 n a i ( x − x 0 ) i p_n(x)=\sum_{i=0}^{n}a_i(x-x_0)^{i} pn(x)=i=0nai(xx0)i,令 T k = [ a k ( x − x 0 ) k ] T_{k}=[a_{k}(x-x_0)^{k}] Tk=[ak(xx0)k](2), ( k = 0 , 1 , 2 , ⋯   , n ) (k=0,1,2,\cdots,n) (k=0,1,2,,n), p n ( x ) = ∑ i = k n T k ( x ) p_{n}(x)=\sum_{i=k}^{n}T_{k}(x) pn(x)=i=knTk(x)

    • T k ( i ) ( x ) T_{k}^{(i)}(x) Tk(i)(x)(2-1)
      1. = 0 0 0, k < i k<i k<i
      2. = a k k ! a_{k}k! akk!, k = i k=i k=i
      3. = a k [ k ( k − 1 ) ⋯ ( k − n + 1 ) ( x − x 0 ) k − n ] a_{k}[k(k-1)\cdots{(k-n+1)}(x-x_0)^{k-n}] ak[k(k1)(kn+1)(xx0)kn], k > i k>i k>i
    • T k ( i ) ( x 0 ) T_{k}^{(i)}(x_0) Tk(i)(x0)(2-2)
      1. = 0 0 0, k < i k<i k<i
      2. = a k k ! a_{k}k! akk!, k = i k=i k=i
      3. = 0 0 0, k > i k>i k>i
  • 可见 p n ( x ) p_{n}(x) pn(x)的第 i i i T k ( i ) ( x ) T_{k}^{(i)}(x) Tk(i)(x) x 0 x_0 x0处的 i i i阶导,只有 k = i k=i k=i次项的导数非0

  • p n ( i ) ( x 0 ) p_{n}^{(i)}(x_0) pn(i)(x0)= ∑ k = 0 n T k ( i ) ( x 0 ) \sum_{k=0}^{n}T_{k}^{(i)}(x_0) k=0nTk(i)(x0)= T i i ( x 0 ) = a i i ! T_{i}^{i}(x_0)=a_ii! Tii(x0)=aii!(3)

  • 把(3)代入(1)式,得 a i i ! = f ( i ) ( x 0 ) a_ii!=f^{(i)}(x_0) aii!=f(i)(x0),可得 a i a_i ai= 1 i ! f ( i ) ( x 0 ) \frac{1}{i!}f^{(i)}(x_0) i!1f(i)(x0),(4) i = 0 , 1 , 2 , ⋯   , n i=0,1,2,\cdots,n i=0,1,2,,n

    • i = 0 i=0 i=0时, a 0 = f ( x 0 ) a_0=f(x_0) a0=f(x0), f ( 0 ) ( x ) f^{(0)}(x) f(0)(x)= f ( x ) f(x) f(x)(零次导相当于不求导)

泰勒多项式

  • 现在,式(0)可以改写为 p n ( x ) p_n(x) pn(x)= ∑ k = 0 n a k ( x − x 0 ) k \sum_{k=0}^{n}a_k(x-x_0)^{k} k=0nak(xx0)k= ∑ k = 0 n 1 k ! f ( k ) ( x 0 ) ( x − x 0 ) k \sum_{k=0}^{n}\frac{1}{k!}f^{(k)}(x_0)(x-x_0)^{k} k=0nk!1f(k)(x0)(xx0)k(5)
  • 这个公式经常展开写: p n ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + ⋯ p_n(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{1}{2!}f''(x_0)(x-x_0)^2+\cdots pn(x)=f(x0)+f(x0)(xx0)+2!1f′′(x0)(xx0)2++ 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n \frac{1}{n!}f^{(n)}(x_0)(x-x_0)^{n} n!1f(n)(x0)(xx0)n(5-1)
  • 式(5)(或(5-1))称为泰勒多项式,具体的称为:
    • 函数 f ( x ) f(x) f(x) x 0 x_0 x0的** n n n次泰勒多项式**,或者称" ( x − x 0 ) (x-x_0) (xx0)的幂展开"的 n n n次泰勒多项式
    • 显然 p n ( x 0 ) = f ( x 0 ) p_{n}(x_0)=f(x_0) pn(x0)=f(x0),这就是式(1-1),因此该条件包含于条件(1)

泰勒中值定理1

  • 若函数 f ( x ) f(x) f(x) x 0 x_0 x0处具有 n n n阶导数,那么 ∃ U ( x 0 ) \exist{U(x_0)} U(x0), ∀ x ∈ U ( x 0 ) \forall{x\in{U(x_0)}} xU(x0),有: f ( x ) f(x) f(x)= ∑ k = 0 n 1 k ! f ( k ) ( x 0 ) ( x − x 0 ) k \sum_{k=0}^{n}\frac{1}{k!}f^{(k)}(x_0)(x-x_0)^{k} k=0nk!1f(k)(x0)(xx0)k+ R n ( x ) R_{n}(x) Rn(x)(6)成立(其中 R n ( x ) = o ( ( x − x 0 ) n ) R_{n}(x)=o((x-x_0)^{n}) Rn(x)=o((xx0)n)(7)
  • 定理的另一种表述:若 f ( x ) f(x) f(x)表示成式(6),则有式(7)成立
    • 式(6)可以写成: f ( x ) = p n ( x ) + R n ( x ) f(x)=p_{n}(x)+R_{n}(x) f(x)=pn(x)+Rn(x)(8),即 R n ( x ) = f ( x ) − p n ( x ) R_{n}(x)=f(x)-p_n(x) Rn(x)=f(x)pn(x)(8-1)
证明
  • 由式(1)可知 R n ( k ) ( x ) ∣ x = x 0 = f ( k ) ( x ) ∣ x = x 0 − p n ( k ) ( x ) ∣ x = x 0 = 0 R_n^{(k)}(x)|_{x=x_0}=f^{(k)}(x)|_{x=x_0}-p_n^{(k)}(x)|_{x=x_0}=0 Rn(k)(x)x=x0=f(k)(x)x=x0pn(k)(x)x=x0=0, k = 1 , 2 , ⋯   , n k=1,2,\cdots,n k=1,2,,n
    • R n ( x 0 ) = R n ′ ( x 0 ) = R n ′ ′ ( x 0 ) R_n(x_0)=R_{n}'(x_0)=R_{n}''(x_0) Rn(x0)=Rn(x0)=Rn′′(x0)= ⋯ \cdots = R n ( n ) ( x 0 ) = 0 R_{n}^{(n)}(x_0)=0 Rn(n)(x0)=0(8-2)
  • R n ( x ) R_n(x) Rn(x)的可导性:
    • 由于 f ( x ) f(x) f(x) x 0 x_0 x0处有 n n n阶导数,因此 f ( x ) f(x) f(x)必在 x 0 x_0 x0的某邻域内存在 n − 1 n-1 n1阶导(有高阶导则必有低阶导)
    • 从而 R n ( x ) R_{n}(x) Rn(x)也在该邻域内有 n − 1 n-1 n1阶导数
  • 为了证明式(7),构造 g ( x ) = R n ( x ) ( x − x 0 ) n g(x)=\frac{R_{n}(x)}{(x-x_0)^{n}} g(x)=(xx0)nRn(x),这是一个 x → x 0 x\to{x_0} xx0时的 0 0 \frac{0}{0} 00型未定式,反复运用洛必达法则:
    • lim ⁡ x → x 0 R n ( x ) ( x − x 0 ) n \lim\limits_{x\to{x_0}}\frac{R_n(x)}{(x-x_0)^{n}} xx0lim(xx0)nRn(x)= lim ⁡ x → x 0 R n ′ ( x ) n ( x − x 0 ) n − 1 \lim\limits_{x\to{x_0}}\frac{R_n'(x)}{n(x-x_0)^{n-1}} xx0limn(xx0)n1Rn(x)= lim ⁡ x → x 0 R n ′ ′ ( x ) n ( n − 1 ) ( x − x 0 ) n − 2 \lim\limits_{x\to{x_0}}\frac{R_{n}''(x)}{n(n-1)(x-x_0)^{n-2}} xx0limn(n1)(xx0)n2Rn′′(x)= ⋯ \cdots = lim ⁡ x → x 0 R n ( n − 1 ) ( x ) n ! ( x − x 0 ) \lim\limits_{x\to{x_0}}\frac{R_{n}^{(n-1)}(x)}{n!(x-x_0)} xx0limn!(xx0)Rn(n1)(x)= lim ⁡ x → x 0 R n ( n ) ( x ) n ! \lim\limits_{x\to{x_0}}\frac{R_{n}^{(n)}(x)}{n!} xx0limn!Rn(n)(x)=0
    • 可见,式(7)成立,从而定理成立
带有Peano余项的泰勒公式
  • 式(6)称为 f ( x ) f(x) f(x) x 0 x_0 x0处(或按 ( x − x 0 ) (x-x_0) (xx0)的幂展开)的带有Peano余项的 n n n阶泰勒公式
Peano余项与近似误差
  • 式(7)称为Peano余项
  • 它是 n n n次泰勒多相似来近似 f ( x ) f(x) f(x)所产生的误差,这个误差是比 ( x − x 0 ) n (x-x_0)^{n} (xx0)n高阶的无穷小

泰勒中值定理2

  • 若函数 f ( x ) f(x) f(x) x 0 x_0 x0处具有 n + 1 n+1 n+1阶导数,那么 ∃ U ( x 0 ) \exist{U(x_0)} U(x0), ∀ x ∈ U ( x 0 ) \forall{x\in{U(x_0)}} xU(x0),有: f ( x ) f(x) f(x)= ∑ k = 0 n 1 k ! f ( k ) ( x 0 ) ( x − x 0 ) k \sum_{k=0}^{n}\frac{1}{k!}f^{(k)}(x_0)(x-x_0)^{k} k=0nk!1f(k)(x0)(xx0)k+ R n ( x ) R_{n}(x) Rn(x)(9-T)(即式(6))成立
    • R n ( x ) R_{n}(x) Rn(x)= T n + 1 T_{n+1} Tn+1= f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} (n+1)!f(n+1)(ξ)(xx0)n+1(9), ξ \xi ξ x 0 , x x_0,x x0,x之间的某个值,即 ξ ∈ ( x 0 , x ) \xi\in{(x_0,x)} ξ(x0,x) ( x , x 0 ) (x,x_0) (x,x0)
      • 虽然 R n ( x ) R_n(x) Rn(x)脚标为 n n n但是其展开式是 n + 1 n+1 n+1,因此还可以记为 T n + 1 T_{n+1} Tn+1
      • p n ( n + 1 ) ( x ) = 0 p_{n}^{(n+1)}(x)=0 pn(n+1)(x)=0(9-0),因为 p n p_n pn n n n次多项式,其 n n n阶导数为常数, n + 1 n+1 n+1阶导数为0
      • R n ( n + 1 ) ( x ) = f ( n + 1 ) ( ξ ) R_{n}^{(n+1)}(x)=f^{(n+1)}(\xi) Rn(n+1)(x)=f(n+1)(ξ)(9-0-1)
    • 和定理1不同的地方在于,定理2要求 x 0 x_0 x0 f ( x ) f(x) f(x) n + 1 n+1 n+1阶导数(P1)
    • 这个形式的余项和 Δ y = f ′ ( ξ ) Δ x \Delta{y}=f'(\xi)\Delta{x} Δy=f(ξ)Δx= f ′ ( ξ ) ( x − x 0 ) f'(\xi)(x-x_0) f(ξ)(xx0), ξ ∈ \xi\in ξ(拉格朗日有限增长定理形式上有相似性)
证明
  • 证明定理2只需要证明式(9)成立,定理1的证明反复使用洛必达法则,定理2的证明则反复使用柯西中值定理
  • R n ( x ) R_{n}(x) Rn(x)= f ( x ) − p n ( x ) f(x)-p_{n}(x) f(x)pn(x)(9-1)(和式(8)一样)
    • 由条件(P1)可知, R n ( x ) R_{n}(x) Rn(x) U ( x 0 ) U(x_0) U(x0)内具有 n + 1 n+1 n+1阶导数,且同样有式(8-2)
    • R n ( x ) R_{n}(x) Rn(x) g ( x ) g(x) g(x)= ( x − x 0 ) n + 1 (x-x_0)^{n+1} (xx0)n+1(9-1-1)两个函数在 x 0 , x x_0,x x0,x为端点的区间(不妨记为 Δ 1 = Δ ( x 0 , x ) \Delta_1=\Delta({x_0,x}) Δ1=Δ(x0,x),(例如取 Δ 1 = [ x 0 , x ] , ( x 0 < x ) \Delta_1=[x_0,x],(x_0<x) Δ1=[x0,x],(x0<x)上满足柯西定理条件,从而由柯西中值定理, R n ( x ) − R n ( x 0 ) g ( x ) − g ( x 0 ) \frac{R_{n}(x)-R_{n}(x_0)}{g(x)-g(x_0)} g(x)g(x0)Rn(x)Rn(x0)= R n ′ ( ξ 1 ) g ′ ( ξ ) \frac{R_{n}'(\xi_1)}{g'(\xi)} g(ξ)Rn(ξ1)(9-2)
    • g ( x 0 ) = 0 g(x_0)=0 g(x0)=0,以及式(8-2),等号左边表示为 R n ( x ) g ( x ) \frac{R_{n}(x)}{g(x)} g(x)Rn(x),从而 R n ( x ) g ( x ) \frac{R_{n}(x)}{g(x)} g(x)Rn(x)= R n ′ ( ξ 1 ) g ′ ( ξ 1 ) \frac{R_{n}'(\xi_1)}{g'(\xi_1)} g(ξ1)Rn(ξ1)(9-2-1)
    • R n ( 0 ) ( x ) R_{n}^{(0)}(x) Rn(0)(x), g ( 0 ) ( x ) g^{(0)}(x) g(0)(x) Δ ( x 0 , x ) \Delta(x_0,x) Δ(x0,x)上应用柯西中值定理相仿,对 R n ( 1 ) ( x ) R_{n}^{(1)}(x) Rn(1)(x), g ( 1 ) ( x ) g^{(1)}(x) g(1)(x)在区间 Δ 2 ( x 0 , ξ 1 ) \Delta_2(x_0,\xi_1) Δ2(x0,ξ1)上应用柯西中值定理得: R n ′ ( ξ 1 ) g ′ ( ξ 1 ) \frac{R'_{n}(\xi_1)}{g'(\xi_1)} g(ξ1)Rn(ξ1)= R n ′ ′ ( ξ 2 ) g ′ ′ ( ξ 2 ) \frac{R_{n}''(\xi_2)}{g''(\xi_2)} g′′(ξ2)Rn′′(ξ2)(9-2-2), ( ξ 2 ∈ Δ 2 ) (\xi_2\in\Delta_2) (ξ2Δ2)
      • 比较(9-2-1),(9-2-2),两式相等,即 R n ( x ) g ( x ) \frac{R_{n}(x)}{g(x)} g(x)Rn(x)= R n ′ ′ ( ξ 2 ) g ′ ′ ( ξ 2 ) \frac{R_{n}''(\xi_2)}{g''(\xi_2)} g′′(ξ2)Rn′′(ξ2)
    • 事实上,按照次方法执第 n + 1 n+1 n+1次后, R n ( x ) g ( x ) \frac{R_n(x)}{g(x)} g(x)Rn(x)= R n ( n + 1 ) ( ξ ) g ( n + 1 ) ( x ) \frac{R_{n}^{(n+1)}(\xi)}{g^{(n+1)}(x)} g(n+1)(x)Rn(n+1)(ξ)= R n ( n + 1 ) ( ξ ) ( n + 1 ) ! \frac{R_{n}^{(n+1)}(\xi)}{(n+1)!} (n+1)!Rn(n+1)(ξ)(9-2-(n+1)),( ξ ∈ Δ n + 1 ( x 0 , ξ n ) \xi\in\Delta_{n+1}(x_0,\xi_n) ξΔn+1(x0,ξn));显然, ξ ∈ ( x 0 , x ) \xi\in(x_0,x) ξ(x0,x)
    • 即: R n ( x ) g ( x ) \frac{R_{n}(x)}{g(x)} g(x)Rn(x)= R n ′ ( ξ 1 ) g ′ ( ξ 1 ) \frac{R'_{n}(\xi_1)}{g'(\xi_1)} g(ξ1)Rn(ξ1)= R n ′ ′ ( ξ 2 ) g ′ ′ ( ξ 2 ) \frac{R_{n}''(\xi_2)}{g''(\xi_2)} g′′(ξ2)Rn′′(ξ2)= ⋯ \cdots = R n ( n + 1 ) ( ξ n + 1 ) ( n + 1 ) ! \frac{R_{n}^{(n+1)}(\xi_{n+1})}{(n+1)!} (n+1)!Rn(n+1)(ξn+1),(记 ξ n + 1 \xi_{n+1} ξn+1= ξ \xi ξ)
    • 由(9-0-1),得 R n ( x ) g ( x ) \frac{R_n(x)}{g(x)} g(x)Rn(x)= f ( n + 1 ) ( ξ ) ( n + 1 ) ! \frac{f^{(n+1)}(\xi)}{(n+1)!} (n+1)!f(n+1)(ξ),即 R n ( x ) R_{n}(x) Rn(x)= f ( n + 1 ) ( ξ ) ( n + 1 ) ! g ( x ) \frac{f^{(n+1)}(\xi)}{(n+1)!}g(x) (n+1)!f(n+1)(ξ)g(x)= f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} (n+1)!f(n+1)(ξ)(xx0)n+1,这就是式(9)
  • 式(9-T)称为 f ( x ) f(x) f(x) x 0 x_0 x0处(或按 ( x − x 0 ) (x-x_0) (xx0)得幂展开)得带有Lagrange余项的 n n n阶泰勒公司和
  • R n ( x ) R_{n}(x) Rn(x)的表达式(9)称为Lagrage余项
lagrange余项和误差估算
  • 上述定理(泰勒定理1)告诉了我们 R n ( x ) = o ( ( x − x 0 ) n ) R_n(x)=o((x-x_0)^{n}) Rn(x)=o((xx0)n),但是该定理并不能具体估算误差大小
  • 估算具体误差可以借助另一种余项的泰勒定理来解决: R n ( x ) R_{n}(x) Rn(x)= f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} (n+1)!f(n+1)(ξ)(xx0)n+1

Taylor中值定理2和Lagrange中值定理的关系

  • n = 0 n=0 n=0时,式(9-T)为0阶Largrange型泰勒公式,即 f ( x ) = f ( x 0 ) + f ′ ( ξ ) ( x − x 0 ) f(x)=f(x_0)+f'(\xi)(x-x_0) f(x)=f(x0)+f(ξ)(xx0),这同时也是Lagrange中值公式
  • 这表明,Taylor中值定理2是Lagrage中值定理的推广
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值