文章目录
notebook@部分常见的在线notebook(提供免费GPU算力)@sageMaker studio lab@Google colab
google colaboratory
-
Google Colab(全称Google Colaboratory)是一种基于云端的免费Jupyter Notebook环境,由Google推出。它允许用户在浏览器中编写和执行Python代码,并且支持一些流行的机器学习框架,如TensorFlow、PyTorch等。使用Google Colab,用户可以轻松地分享Notebook文档并与其他人协作工作。
-
Google Colab 可以免费使用,但有一些限制,例如每个Notebook最多只能运行12小时。不过,对于大多数小规模的机器学习任务来说,这已经足够了。此外,Google Colab 还提供了GPU和TPU加速器来加快深度学习任务的运行速度。
-
command line - How can I run shell (terminal) in Google Colab? - Stack Overflow
Kaggle notebook
-
Kaggle Kernels:Kaggle是一个数据科学社区,提供免费、基于云的Jupyter Notebook环境(称为Kernels)。相对于Colab,Kaggle Kernels提供更好的稳定性和更快的速度,因为它们运行在Kaggle的专用服务器上。
-
提供免费GPU
-
how to switch ON the GPU in Kaggle Kernel? | Data Science and Machine Learning
- 为了使用gpu,您需要进行手机号验证
- 如果账号不验证的话,是看不到
Accelerator GPU/TPU
- 您可以点击账号头像->Account->进行Verify
AWS SageMaker Studio Lab🎈
-
适用于机器学习的免费开发环境 - JupyterLab - Amazon Web Services
- Amazon SageMaker Studio Lab 是一个免费的机器学习(ML)开发环境,它免费提供计算、存储(高达 15GB)和安全性,供任何人学习和试验 ML。
- 您只需一个有效的电子邮件地址即可开始使用,无需配置基础设施或管理身份和访问权限,甚至无需注册 AWS 账户。
- SageMaker Studio Lab 通过 GitHub 集成加速模型构建,它预配置了最流行的 ML 工具、框架和库,可让您立即开始使用。
- SageMaker Studio Lab 会自动保存您的工作,因此您无需在会话之间重新启动。就像合上笔记本电脑然后再回来一样简单。
-
和Amazon账号有所区别,目前账号是要经过申请和多次回复确认才可以拿到账号(但整个注册过程是免费的)
- 本人注册用了2天左右时间,4~5封互动email
- 注意,该项目目前国内可以直接访问,不建议使用代理(反而容易被限制访问!🎈)
-
SageMaker是亚马逊公司(Amazon)的一项机器学习(Machine Learning)服务,它基于云计算平台AWS(Amazon Web Services)提供了一整套的机器学习工具和框架,可以帮助开发者快速构建、训练和部署机器学习模型。SageMaker的名称中,“Sage”代表智慧和洞察力,“Maker”代表制造者或创建者,意味着SageMaker的目标是帮助开发者快速构建智能应用程序。
运行问题🎈
-
在sagemaker studio lab中,不是任意时刻都可以运行的(只有当左下角显示
Fully initialized
时,notebook才可以运行) -
-
如果无法从waitting状态恢复,那么可以考虑回到sagemaker stuido lab的控制台,重启实例(stop running time+start)
SageMaker studio vs SageMaker studio Lab🎈
-
您因该注意区别两个工作是的区别
-
Amazon SageMaker Studio和Amazon SageMaker Notebooks(之前称为SageMaker Lab)都是AWS SageMaker的一部分,是用于构建、训练和部署机器学习模型的完整平台。
SageMaker Studio是一个全面的集成开发环境(IDE),为数据科学家和机器学习工程师提供了一个统一的界面,可以使用多种编程语言(如Python、R、Scala)来构建和部署机器学习模型。它提供了一个基于浏览器的可视化界面,使用户可以轻松地管理数据集、训练模型、部署模型和监控模型性能等。
SageMaker Notebooks(SageMaker studio Lab)是一个基于Jupyter Notebook的交互式开发环境,使用户可以使用Python、R和Scala等编程语言构建和部署机器学习模型。它提供了一个类似于传统Jupyter Notebook的界面,用户可以创建、编辑和运行Notebook,以交互方式探索数据、开发和测试模型,并将它们部署到SageMaker中。
总的来说,SageMaker Studio提供了一个更全面、更高级的开发环境,适用于需要更全面的功能和更高级的操作的用户,而SageMaker Notebooks则提供了一个更简单、更轻量级的开发环境,适用于需要快速开始构建模型的用户。
使用环境和UI
-
Amazon SageMaker Studio Lab components overview - Amazon SageMaker
-
Use the Amazon SageMaker Studio Lab project runtime - Amazon SageMaker
-
sageMaker基于jupyterLab改造过来的
-
在这个工作环境相当于一个小型系统
- 可以浏览文件系统
- 克隆多个项目
- 启动多个终端和notebook
-
导入项目@从github导入
- Clone a Git Repository in SageMaker Studio - Amazon SageMaker
- Use Git Repositories in a Notebook Instance - Amazon SageMaker
默认环境
选择notebook kernel
- 如果您的项目没有conda环境配置文件,那么建议你打开终端,用conda创建一个环境(比如名为
tf
)- 为了能够运行notebook,您至少需要在环境中安装python和notebook(可以自行指定版本,否则自动安装最新版)
conda install python
conda install notebook
- 到此位置,您可以选择刚才安装的环境中的notebook kernel(包括默认环境中的kernel)
- 然后,您可以根据项目的
requirements.txt
,安装要求的依赖
demo
-
-
上图中的根目录中已经包含4个目录
- 包括著名的
d2l
项目 - 一个语音情感识别项目
- sagemaker提供的示例项目
- 包括著名的
-
例如,在sageMaker中Clone github项目
-
可以看到网速是不错的
-
(studiolab) studio-lab-user@default:~$ git clone https://github.com/x4nth055/emotion-recognition-using-speech && exit Cloning into 'emotion-recognition-using-speech'... remote: Enumerating objects: 7682, done. remote: Counting objects: 100% (266/266), done. remote: Compressing objects: 100% (102/102), done. Receiving objects: 53% (4072/7682), 510.11 MiB | 25.23 MiB/s
-
其他选择
-
中国用户可以访问Google Colab,但是由于网络限制可能会有不稳定的情况。此外,由于Colab的服务器在国外,因此使用Colab可能会受到较高的延迟和网络问题的影响。
如果您想寻找其他代替品,有一些选择可以考虑:
国内产品
- Tencent Cloud AI Studio:腾讯云AI Studio是一个基于云的机器学习和深度学习平台,
- 提供了类似于Colab和Kaggle Kernels的Notebook环境。
- 由于它是在国内的服务器上运行的,因此在中国的访问速度应该更快。
- DeepNote:DeepNote是一个新的Notebook环境,类似于Colab和Kaggle Kernels。
- 百度AI studio:主要在上面运行paddlepaddle