notebook@部分常见的在线notebook(提供免费GPU算力)@sageMaker studio lab@Google colab

notebook@部分常见的在线notebook(提供免费GPU算力)@sageMaker studio lab@Google colab

google colaboratory

Kaggle notebook

AWS SageMaker Studio Lab🎈

  • 适用于机器学习的免费开发环境 - JupyterLab - Amazon Web Services

    • Amazon SageMaker Studio Lab 是一个免费的机器学习(ML)开发环境,它免费提供计算、存储(高达 15GB)和安全性,供任何人学习和试验 ML。
    • 您只需一个有效的电子邮件地址即可开始使用,无需配置基础设施或管理身份和访问权限,甚至无需注册 AWS 账户
    • SageMaker Studio Lab 通过 GitHub 集成加速模型构建,它预配置了最流行的 ML 工具、框架和库,可让您立即开始使用。
    • SageMaker Studio Lab 会自动保存您的工作,因此您无需在会话之间重新启动。就像合上笔记本电脑然后再回来一样简单。
  • Amazon SageMaker Studio Lab - Amazon SageMaker

  • 和Amazon账号有所区别,目前账号是要经过申请和多次回复确认才可以拿到账号(但整个注册过程是免费的)

    • 本人注册用了2天左右时间,4~5封互动email
    • 注意,该项目目前国内可以直接访问,不建议使用代理(反而容易被限制访问!🎈)
  • SageMaker是亚马逊公司(Amazon)的一项机器学习(Machine Learning)服务,它基于云计算平台AWS(Amazon Web Services)提供了一整套的机器学习工具和框架,可以帮助开发者快速构建、训练和部署机器学习模型。SageMaker的名称中,“Sage”代表智慧和洞察力,“Maker”代表制造者或创建者,意味着SageMaker的目标是帮助开发者快速构建智能应用程序。

运行问题🎈

  • 在sagemaker studio lab中,不是任意时刻都可以运行的(只有当左下角显示Fully initialized时,notebook才可以运行)

  • 在这里插入图片描述

  • 如果无法从waitting状态恢复,那么可以考虑回到sagemaker stuido lab的控制台,重启实例(stop running time+start)

SageMaker studio vs SageMaker studio Lab🎈

  • 您因该注意区别两个工作是的区别

  • Amazon SageMaker Studio和Amazon SageMaker Notebooks(之前称为SageMaker Lab)都是AWS SageMaker的一部分,是用于构建、训练和部署机器学习模型的完整平台。

    SageMaker Studio是一个全面的集成开发环境(IDE),为数据科学家和机器学习工程师提供了一个统一的界面,可以使用多种编程语言(如Python、R、Scala)来构建和部署机器学习模型。它提供了一个基于浏览器的可视化界面,使用户可以轻松地管理数据集、训练模型、部署模型和监控模型性能等。

    SageMaker Notebooks(SageMaker studio Lab)是一个基于Jupyter Notebook的交互式开发环境,使用户可以使用Python、R和Scala等编程语言构建和部署机器学习模型。它提供了一个类似于传统Jupyter Notebook的界面,用户可以创建、编辑和运行Notebook,以交互方式探索数据、开发和测试模型,并将它们部署到SageMaker中。

    总的来说,SageMaker Studio提供了一个更全面、更高级的开发环境,适用于需要更全面的功能和更高级的操作的用户,而SageMaker Notebooks则提供了一个更简单、更轻量级的开发环境,适用于需要快速开始构建模型的用户。

使用环境和UI
导入项目@从github导入

默认环境

选择notebook kernel
  • 如果您的项目没有conda环境配置文件,那么建议你打开终端,用conda创建一个环境(比如名为tf)
    • 为了能够运行notebook,您至少需要在环境中安装python和notebook(可以自行指定版本,否则自动安装最新版)
    • conda install python
    • conda install notebook
  • 到此位置,您可以选择刚才安装的环境中的notebook kernel(包括默认环境中的kernel)
  • 然后,您可以根据项目的requirements.txt,安装要求的依赖

demo

  • 在这里插入图片描述

  • 上图中的根目录中已经包含4个目录

    • 包括著名的d2l项目
    • 一个语音情感识别项目
    • sagemaker提供的示例项目
  • 例如,在sageMaker中Clone github项目

    • 可以看到网速是不错的

    • (studiolab) studio-lab-user@default:~$ git clone https://github.com/x4nth055/emotion-recognition-using-speech && exit
      Cloning into 'emotion-recognition-using-speech'...
      remote: Enumerating objects: 7682, done.
      remote: Counting objects: 100% (266/266), done.
      remote: Compressing objects: 100% (102/102), done.
      Receiving objects:  53% (4072/7682), 510.11 MiB | 25.23 MiB/s
      

其他选择

  • 中国用户可以访问Google Colab,但是由于网络限制可能会有不稳定的情况。此外,由于Colab的服务器在国外,因此使用Colab可能会受到较高的延迟和网络问题的影响。

    如果您想寻找其他代替品,有一些选择可以考虑:

国内产品

  1. Tencent Cloud AI Studio:腾讯云AI Studio是一个基于云的机器学习和深度学习平台,
    1. 提供了类似于Colab和Kaggle Kernels的Notebook环境。
    2. 由于它是在国内的服务器上运行的,因此在中国的访问速度应该更快。
  2. DeepNote:DeepNote是一个新的Notebook环境,类似于Colab和Kaggle Kernels。
  3. 百度AI studio:主要在上面运行paddlepaddle
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cxxu1375

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值