kaggle之EDA,特征工程

本文介绍了在kaggle竞赛中进行数据探索(EDA)和特征工程的一些关键步骤,包括数据集的合并、缺失值处理、数据类型的设定、特征构造、归一化等,旨在提升机器学习模型的性能。
摘要由CSDN通过智能技术生成

对于机器学习的从业者或者兴趣爱好者而言,kaggle提供了一个机器学习相关的竞技和交流平台.通过比赛和讨论分享,可以知道自己的水平并找到提高的方向.

EDA(Exploratory Data Analysis)

通常我们会用 pandas 来载入数据,并做一些简单的可视化来理解数据。

Visualization,通常来说 matplotlib 和 seaborn 提供的绘图功能就可以满足需求了。

比较常用的图表有:

查看目标变量的分布。当分布不平衡时,根据评分标准和具体模型的使用不同,可能会严重影响性能。

对 Numerical Variable,可以用 Box Plot 来直观地查看它的分布。

对于坐标类数据,可以用 Scatter Plot 来查看它们的分布趋势和是否有离群点的存在。

对于分类问题,将数据根据 Label 的不同着不同的颜色绘制出来,这对 Feature 的构造很有帮助。

绘制变量之间两两的分布和相关度图表。

特征工程

Feature Engineering Techniques,这篇文章是kaggle上面的一位grandmaster分享的特征工程常用操作,摘录如下.

train and test 训练集和测试集组合在一起

df = pd.concat([train[col],test[col]],axis=0)
# PERFORM FEATURE ENGINEERING HERE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值