深度学习记录--梯度消失和爆炸

本文探讨了深度神经网络中随着层数增加出现的梯度消失和梯度爆炸问题,强调了当权重w偏离1时的后果,并提出了权重初始化作为应对策略,以控制特征值在大深度网络中的影响。
摘要由CSDN通过智能技术生成

梯度消失和爆炸的产生

当神经网络层数很大时,即l很大时,w与1之间的大小关系会产生梯度消失与梯度爆炸的问题

当w<1时,w^{l}会非常小,梯度消失

当w>1时,w^{l}会非常大,梯度爆炸

解决方法

权重初始化

层数n越大,越要使特征值w变小

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值