与OpenAI的其他模型类似 ,GPT-5模型在多样化的数据集上训练 ,包括互联网上公开 可⽤的信息、 我们与第三方合作获取的信息 ,以及⽤户或人⼯训练师和研究人员提供 或⽣成的信息。
我们的数据处理流程包含严格的过滤 ,以保持数据质量并降低潜在风险。 我们采⽤先进的数据过滤技术 ,减少训练数据中的个人信息。
同时 ,我们结合使 ⽤内容审核API和安全分类器 ,帮助防⽌有害或敏感内容的使⽤ ,包括涉及未成年人的性内容等明确材料。
OpenAI的推理模型 ,包括gpt-5-thinking、 gpt-5-thinking-mini和gpt-5-thinking-nano ,采⽤强化学习进⾏推理训练。
这些模型在回答前会先思考: 它们能在回应⽤户 前⽣成⼀条较⻓的内部思维链。 通过训练 ,这些模型学会优化思考过程 ,尝试不同策略 ,并识别⾃身错误。
推理能⼒使模型能够遵循我们设定的具体指导原则和模型政策 ,帮助其⾏为符合我们的安全预期。这意味着它们能提供更有帮助的回答 ,更好地抵御绕过安全规则的尝试。
请注意 ,来⾃实时模型(例如OpenAI o3)的比较值取⾃这些模型的最新版本 ,因此可能与这些模型发布时的数值略有不同。