线性分类器(Linear Classifier)

线性分类器

在这里插入图片描述
如上图所示,这是二维空间中的一个数据集,如果他正好能够被一条直线分成两类,那么我们称它为线性可分数据集,这条直线就是一个线性分类器。

在三维空间中,如果数据集线性可分,是指能够被一个平面分为两类。
在这里插入图片描述
在一维空间中,所有的点都在一条直线上,如果线性可分。可以理解为它们能够被一个点分开。
在这里插入图片描述
这里的直线、平面、点被分为决策边界。

一个 m 维空间中的数据集,如果能够被一个超平面一分为二,那么这个数据集就是线性可分的,这个超平面就是决策边界。
在这里插入图片描述
例如,这是二维平面上的一条直线,
在这里插入图片描述
它可以把平面切分成两部分,也就是说将这个平面中的点分成了两类。

下图为这个分类器的表达式:
在这里插入图片描述
其中,z 代表线性组合,2x1 - x2 - 2,step是阶跃函数,当 z 大于 0 时,分类器的输出为1,当 z 小于 0 时,分类器的输出为0。

我们随机选取几个点,下图为这些点在图中的位置。
在这里插入图片描述
y是分类结果
在这里插入图片描述
这里的step函数还可以使用Sigmoid的函数来代替,可以发现这就是逻辑回归。
在这里插入图片描述
逻辑回归其实就是构造一个线性分类器。实现对线性可分数据集的划分,其中的线性模型就是决策边界。

从这个例子中,也可以看出来这个偏置项 b 的意义。如果没有这个 b ,那么所有的分类器都要经过原点。显然模型就丧失了一般性。

线性不可分

除了线性可分问题,还有线性不可分问题。如下图所示,
在这里插入图片描述
上图中的这个数据集中的两类样本点,就无法通过一条直线完全区分开。它需要两条直线才能分开。

下图中的这个数据集中的样本,
在这里插入图片描述
也无法通过一条直线区分开,它需要一条曲线分开。这些都是非线性可分的数据。

逻辑运算

在逻辑运算中,与或非运算都是线性可分的,而异或运算是非线性可分的。

与运算

在逻辑与运算中,只有当x1和x2都是1时,结果才为1,否则结果为0。
在这里插入图片描述
这四个点可以被分为两类,绿色的被分类为0,红色的点被分类为1,显然可以被一条直线分成两类,这根直线的参数可以通过训练得到,并且一定收敛,此外,可以看出这根直线并不是唯一的,这些直线也都可以区分这两类点,它们都可以作为与运算的分类器。

或运算

在这里插入图片描述
这四个点也可以被分为两类,绿色的被分类为0,红色的点被分类为1。

非运算

逻辑非的输入只有1个自变量,
在这里插入图片描述
是一维的,它也是线性可分的。

异或运算

在这里插入图片描述
异或是指两个操作数相同,结果为0。而两个操作数不同,则结果不同。
显然,它不是线性可分的。

线性分类器是一种基本的机器学习算法,它通过线性函数对数据进行分类。在Python中,我们可以使用Scikit-learn库来实现线性分类器。 下面是一个基本的代码示例: ```python from sklearn.linear_model import SGDClassifier from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 生成样本数据集 X, y = make_classification(n_samples=1000, n_features=10, n_classes=2, random_state=42) # 将数据集拆分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建线性分类器 clf = SGDClassifier(loss='log', alpha=0.01, max_iter=1000, random_state=42) # 训练模型 clf.fit(X_train, y_train) # 预测结果 y_pred = clf.predict(X_test) # 计算准确率 accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) ``` 这个代码示例中,我们使用Scikit-learn中的make_classification函数生成了一个包含1000个样本和10个特征的数据集,其中有两个类别。然后,我们将数据集拆分为训练集和测试集,并使用SGDClassifier类创建了一个线性分类器。在训练模型之后,我们对测试数据进行了预测,并计算了模型的准确率。 需要注意的是,在这个代码示例中,我们使用了逻辑回归来实现线性分类器。在SGDClassifier类中,我们将loss参数设置为'log',表示使用逻辑回归损失函数。如果将loss参数设置为'hinge',则表示使用支持向量机(SVM)损失函数,从而实现线性支持向量机Linear SVM)分类器。另外,我们还可以通过调整alpha参数和max_iter参数来优化模型的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xuechanba

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值