车辆违规开启远光灯检测系统:融合YOLO-MS改进YOLOv8

1.研究背景与意义

项目参考AAAI Association for the Advancement of Artificial Intelligence

研究背景与意义

随着社会的不断发展和交通工具的普及,车辆违规行为成为了一个严重的问题。其中,车辆违规开启远光灯是一种常见的违规行为,给其他车辆和行人带来了安全隐患。因此,开发一种有效的车辆违规开启远光灯检测系统具有重要的现实意义。

违规开启远光灯的行为主要有两个方面的危害。首先,违规开启远光灯会对其他车辆的驾驶造成干扰,降低其他车辆的视线,增加交通事故的风险。特别是在夜间或恶劣的天气条件下,远光灯的强光会直接照射到其他车辆的驾驶员眼睛,导致视线模糊,容易发生事故。其次,违规开启远光灯也会对行人的安全构成威胁。当行人在夜间或者路灯较暗的地方行走时,远光灯的强光会使行人视线受到干扰,增加行人被撞的风险。

目前,已经有一些研究关注车辆违规开启远光灯的检测问题。传统的方法主要基于图像处理和计算机视觉技术,通过提取图像中的特征来判断车辆是否开启了远光灯。然而,由于图像中的光照条件、车辆姿态和背景干扰等因素的影响,传统方法在检测准确性和鲁棒性方面存在一定的局限性。

为了解决这些问题,本研究提出了一种融合YOLO-MS改进YOLOv8的车辆违规开启远光灯检测系统。YOLO-MS是一种基于深度学习的目标检测算法,能够实现实时的目标检测任务。通过融合YOLO-MS和改进的YOLOv8算法,我们可以有效地提高车辆违规开启远光灯的检测准确性和鲁棒性。

本研究的意义主要体现在以下几个方面。首先,通过开发一种有效的车辆违规开启远光灯检测系统,可以提高交通安全水平,减少交通事故的发生。其次,该系统可以帮助交警部门更好地监管道路交通秩序,提高交通管理的效率。同时,该系统还可以为车辆驾驶员提供一个良好的驾驶环境,减少驾驶员的驾驶压力和疲劳程度。

此外,本研究还具有一定的学术意义。通过融合YOLO-MS和改进的YOLOv8算法,可以为目标检测领域的研究提供一个新的思路和方法。同时,本研究还可以为其他类似的违规行为检测问题提供参考和借鉴,推动相关领域的研究和发展。

综上所述,开发一种融合YOLO-MS改进YOLOv8的车辆违规开启远光灯检测系统具有重要的现实意义和学术价值。通过该系统的应用,可以提高交通安全水平,减少交通事故的发生,为交通管理和驾驶员提供更好的服务。同时,该系统的研究也为目标检测领域的发展提供了新的思路和方法。

2.图片演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.视频演示

车辆违规开启远光灯检测系统:融合YOLO-MS改进YOLOv8_哔哩哔哩_bilibili

4.数据集的采集&标注和整理

图片的收集

首先,我们需要收集所需的图片。这可以通过不同的方式来实现,例如使用现有的公开数据集YGDatasets。

在这里插入图片描述

labelImg是一个图形化的图像注释工具,支持VOC和YOLO格式。以下是使用labelImg将图片标注为VOC格式的步骤:

(1)下载并安装labelImg。
(2)打开labelImg并选择“Open Dir”来选择你的图片目录。
(3)为你的目标对象设置标签名称。
(4)在图片上绘制矩形框,选择对应的标签。
(5)保存标注信息,这将在图片目录下生成一个与图片同名的XML文件。
(6)重复此过程,直到所有的图片都标注完毕。

由于YOLO使用的是txt格式的标注,我们需要将VOC格式转换为YOLO格式。可以使用各种转换工具或脚本来实现。

下面是一个简单的方法是使用Python脚本,该脚本读取XML文件,然后将其转换为YOLO所需的txt格式。

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import xml.etree.ElementTree as ET
import os

classes = []  # 初始化为空列表

CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))

def convert(size, box):
    dw = 1. / size[0]
    dh = 1. / size[1]
    x = (box[0] + box[1]) / 2.0
    y = (box[2] + box[3]) / 2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)

def convert_annotation(image_id):
    in_file = open('./label_xml\%s.xml' % (image_id), encoding='UTF-8')
    out_file = open('./label_txt\%s.txt' % (image_id), 'w')  # 生成txt格式文件
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    for obj in root.iter('object'):
        cls = obj.find('name').text
        if cls not in classes:
            classes.append(cls)  # 如果类别不存在,添加到classes列表中
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')

xml_path = os.path.join(CURRENT_DIR, './label_xml/')

# xml list
img_xmls = os.listdir(xml_path)
for img_xml in img_xmls:
    label_name = img_xml.split('.')[0]
    print(label_name)
    convert_annotation(label_name)

print("Classes:")  # 打印最终的classes列表
print(classes)  # 打印最终的classes列表

整理数据文件夹结构

我们需要将数据集整理为以下结构:

-----data
   |-----train
   |   |-----images
   |   |-----labels
   |
   |-----valid
   |   |-----images
   |   |-----labels
   |
   |-----test
       |-----images
       |-----labels

确保以下几点:

所有的训练图片都位于data/train/images目录下,相应的标注文件位于data/train/labels目录下。
所有的验证图片都位于data/valid/images目录下,相应的标注文件位于data/valid/labels目录下。
所有的测试图片都位于data/test/images目录下,相应的标注文件位于data/test/labels目录下。
这样的结构使得数据的管理和模型的训练、验证和测试变得非常方便。

模型训练
 Epoch   gpu_mem       box       obj       cls    labels  img_size
 1/200     20.8G   0.01576   0.01955  0.007536        22      1280: 100%|██████████| 849/849 [14:42<00:00,  1.04s/it]
           Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100%|██████████| 213/213 [01:14<00:00,  2.87it/s]
             all       3395      17314      0.994      0.957      0.0957      0.0843

 Epoch   gpu_mem       box       obj       cls    labels  img_size
 2/200     20.8G   0.01578   0.01923  0.007006        22      1280: 100%|██████████| 849/849 [14:44<00:00,  1.04s/it]
           Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100%|██████████| 213/213 [01:12<00:00,  2.95it/s]
             all       3395      17314      0.996      0.956      0.0957      0.0845

 Epoch   gpu_mem       box       obj       cls    labels  img_size
 3/200     20.8G   0.01561    0.0191  0.006895        27      1280: 100%|██████████| 849/849 [10:56<00:00,  1.29it/s]
           Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100%|███████   | 187/213 [00:52<00:00,  4.04it/s]
             all       3395      17314      0.996      0.957      0.0957      0.0845

5.核心代码讲解

5.1 dark.py

封装为类后的代码如下:

from PIL import Image
import os

class
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值