基于Python查看SVD压缩图片的效果

通过Python进行奇异值分解(SVD)实验,分析SVD在图像压缩中的表现。发现仅保留少量奇异值(如0.7、0.8、0.9占比的前几个奇异值)即可恢复较清晰图像,有效地降低了图像的维数,如从450维降至149维仍保留90%信息。但要注意,降维可能导致信息损失,通常要求损失不超过5%。
摘要由CSDN通过智能技术生成

基于Python查看SVD压缩图片的效果

标签: Python 机器学习


机器学习中常用的降维方法是主成分分析(PCA),而主成分分析常用奇异值分解(SVD)。那么SVD的效果到底如何呢?SVD常用来进行图像的压缩,我们就来实验一下。

用到的包:

  • PIL
  • numpy

实验

载入一张彩色图片,分别对其RGB通道进行SVD分解。奇异值的占比公式为:
∑ i = 1 K σ i i ∑ i = 1 n σ i i \dfrac{\sum_{i=1}^K{\sigma_{ii}}}{\sum_{i=1}^n{\sigma_{ii}}} i=1nσ

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值