概率论得学习和整理6:概率分布

目录

1 概率相关的定义

1.1 概率空间

1.2 可测空间

1.3 概率的定义,从测度论来的

2 概率分布的相关概念

2.1 两对概念,随机事件:概率,随机变量:概率分布

2.2 第1对概念---事件/随机事件:(事件的)概率

2.3 第2对概念---随机变量:概率分布

2.4 两种事件,两种概率 完全不等价

3  什么是概率分布

3.1 概率分布的定义

3.2 概率的分布的由来

3.3 为什么一定要分析概率的分布(规律)? 

3.4 概率分布就是 概率分布规律

= 概率分布律/ pdf函数 / pdf函数图(概率分布图)

3.5  这些概念说的是一回事

4 怎么表示 概率的分布 ?

4.1 下面的方法都可以表示概率分布规律

4.2 概率分布律

4.3 概率分布函数

4.3.1 PMF (离散的)

4.3.2 PDF (连续的)

4.3.3 CDF

4.4 概率分布图

4.5  概率分布之和 == 100%

4.6  Σ 概率分布之和==100% == 概率分布曲线往X轴下围的面积

4.7 概率分布之和的面积解释                         

4.8  概率分布之和==100% 可证明                       

5 不同的概率分布的 分布图&期望方差,简单汇总

5.1 不同的概率分布的核心差异

5.2 不同的概率分布举例

5.3 不同分布之间的关系

5.3.1  同类分布

5.3.2 分布的极限

5.4 伯努利试验相关分布

5.4.1 0-1分布

5.4.3 二项分布

5.5 负二项分布

5.5.1 几何分布

5.6 超几何分布

5.6.1 超几何分布(有几个限制条件)

6 连续概率分布 (建设ing...)

6.1  连续均匀分布

6.2  正态分布


1 概率相关的定义

  • 测度论对概率的定义会更严格
  • 没学过测度论,简单了解了下

1.1 概率空间

  • ​概率空间是概率论的基础。
  • 概率的严格定义基于这个概念
  • 概率空间(Ω, F, P)是一个总测度为1的测度空间(即P(Ω)=1)
  1. 在确定概率/已知概率的情况,一般是统计时/抽样调查时,知道先验的  Σp=p1+p2+...+pn=1
  2. 在概率分布里表现为,随机变量x,其对应的概率为 P(x=i)对应1个pdf, 而 Σpdf=1

1.2 可测空间

  • 概率空间(Ω, F, P)是一个总测度为1的测度空间(即P(Ω)=1)
  • (Ω,F)合起来称为可测空间。事件就是样本输出的集合,在此集合上可定义其概率。
  • F是Ω的所有可能的子集的总集合。
  • 比如成功1次,成功2次,第1次成功第2次失败。。。。等等各种可能的集合,以及他们组成的小集合比如:成功2 次的随机事件,第5次成功的随机事件等等,各种集合的组合也包含在内。

1.3 概率的定义,从测度论来的

  • 测度论里,把概率定义很严格,概率需要在概率空间上进行定义
  • 概率空间(Ω, F, P)第3项P称为概率,或者概率测度。
  • 这是一个从集合F到实数域R的函数。
  • 每个事件都被此函数赋予一个0和1之间的概率值。

2 概率分布的相关概念

2.1 两对概念,随机事件:概率,随机变量:概率分布

  • 第1对概念---随机事件:概率
  • 第2对概念---随机变量:概率分布

2.2 第1对概念---事件/随机事件:(事件的)概率

第1对概念---事件/随机事件:(事件的)概率

  • 随机事件e
  • 随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件(简称事件)。
  • 概率,亦称“或然率”,事件的概率,它是反映随机事件出现的可能性大小

2.3 第2对概念---随机变量:概率分布

  • 随机变量(random variable)表示随机试验各种结果的实值单值函数。
  • 随机变量是定义在概率空间(Ω, F, P)上。
  • 随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达。
  • 也就是 随机变量表示多种随机结果/随机事件,是一个集合/也可以看过一个多个随机事件的函数。 X=f(e)

  • 概率分布,是指用于表述随机变量取值的概率规律。
  • 事件的概率表示了一次试验中某一个结果发生的可能性大小。
  • 若要全面了解试验,则必须知道试验的全部可能结果各种可能结果发生的概率,即随机试验的概率分布。
  • 如果所有试验结果(表示多个事件)用变量X的取值来表示,则随机试验的概率分布就是随机变量的概率分布,即随机变量的可能取值及取得对应值的概率。
  • 根据随机变量所属类型的不同,概率分布取不同的表现形式。

2.4 两种事件,两种概率 完全不等价

  • 随机变量 和 随机事件,完全不是一回事,随机变量是包括各种多种事件,各种可能事件组合等的。
  • 概率分布是Pi 和概率p 完全不是一回事,不能等价。 随机事件的概率是一个确定的数=p ,而随机变量的Pi一般都是一个函数,一个关于随便变量的概率函数,pdf
  • 因为随机事件--对应概率,这个概率是个固定的,且   1>=  p>=0  是一个确定的小数。
  • 但是随机变量(和编程一样,变量是存储可变化的值的),会因为 随机变量取不同的值而对应不同的概率,所以随机变量的概率不是一个确定的数,而是多个概率,所以得用函数形式表示。

3  什么是概率分布

3.1 概率分布的定义

  • 概率分布:
  • 随机变量取值的规律
  • 什么样的规律?因为随机变量的取值是有概率的,所以这个规律就是关于概率的规律,就是随机变量的概率规律

3.2 概率的分布的由来

怎么就跳到概率分布了呢?

  • step1: 首先有1个实验,实验可以划分为不同的事件
  • step2: 事件有不同的发生次数,绝对次数并没什么用
  • step3: 但是把事件的绝对次数处理为占比比例,就是事件发生的概率,但是 概率只显示为百分比% 和饼图这种简单的分析显然是不够用,接下来怎么分析呢?
  • 这个概率,就是事件的概率,固定概率。
  • step4:  从各种可能的事件--推出一个对应的随机变量。这个随机变量包含多个基础事件,是一个定义在概率空间(Ω, F, P)上的F的子集。
  • step5:用概率分布(图)来分析不同的 事件组合的 事件--随机变量--概率的关系,并图示化,这就是所谓的 概率分布函数,概率分布图等

思维导图:怎么从事件--次数---概率--概率分布的逻辑流程

下面是思维导图(以前画的,感觉内容有点不完整,暂时放这先)

3.3 为什么一定要分析概率的分布(规律)? 

  • 因为随机事件--对应概率,这个概率是个固定的,且   1>=  p>=0  是一个确定的小数。
  • 但是随机变量(和编程一样,变量是存储可变化的值的),会因为 随机变量取不同的值而对应不同的概率,所以随机变量的概率不是一个确定的数,而是多个概率,所以得用函数形式表示。
  • 若要全面了解试验,则必须知道试验的全部可能结果及各种可能结果发生的概率,即随机试验的概率分布
  • 而且首先不同的概率分布,有不同的规律,差异很大
  • 而各种复杂的分布规律,需要借助更高级的数学工具去分析

3.4 概率分布就是 概率分布规律

= 概率分布律/ pdf函数 / pdf函数图(概率分布图)

  • 比如,二项分布的概率 p(x=k)=C(n,k) * p^k* (1-p) ^(n-k)
  • 对应的概率分布函数就是如下的图里的函数
  • 但是要明白每种分布的随机变量,比如二项分布中,试验次数n以及确定,需要考察的随机变量是总实验此时内可能成功的次数k(k可能变化)
  • 概率分布就是pdf 函数
  • 横轴是 随机变量k, 纵轴肯定是概率P(每个不同的k 对应的Pk)

 

3.5  这些概念说的是一回事

我觉得,如果有下面的各种说法是一回事

  1. 某个(随机变量的)概率模型
  2. 某个(随机变量的)概率分布
  3. 随机变量所有不同取值对应的概率,这些概率的集合
  4. 随机变量的概率集合
  5. 随机变量的概率函数
  6. 关于随机变量的概率规律
  7. 关于随机变量的权重规律(权重=概率)

4 怎么表示 概率的分布 ?

4.1 下面的方法都可以表示概率分布规律

  • 概率分布,是指用于表述随机变量取值的概率规律。 
  • 而且一定是表示了,整个样本空间的,全部随机变量的取值和对应的概率
  • 而且无论是概率分布函数,还是分布图,都能显示出,概率的分布规律
  1. 概率分布律表格
  2. 概率分布函数pdf
  3. 概率分布图/pdf函数图

4.2 概率分布律

  • 概率分布律:law of probability distribution
  • 即概率分布的规律,表达式总结
分布律事件ABCD
随机变量0123
概率10%20%60%10%
累计概率10%30%90%100%

4.3 概率分布函数

4.3.1 PMF (离散的)

  • PMF : 概率质量函数 / 概率分布函数(probability mass function), 概率质量函数是离散随机变量在各特定取值上的概率。
  • 常见的连续随机变量分布的PDF函数:均匀分布,指数分布,Gamma分布和正态分布等。
  • 简单的说
  • 可以是个if,
  • 也可以说是个分段函数

在这里插入图片描述  在这里插入图片描述

4.3.2 PDF (连续的)

  • PDF:概率密度函数(probability density function), 连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。
  • 常见的离散随机变量分布的PMF函数:伯努利分布,二项分布,泊松分布。
  • 简单的说,就是一个积分

在这里插入图片描述

4.3.3 CDF

  • CDF分布函数,累计分布函数
  • 重点是:累计的
  • 离散的,连续的变量都有分布函数
  • CDF : 累积分布函数 (cumulative distribution function),又叫分布函数,是概率密度函数的积分,能完整描述一个实随机变量X的概率分布

在这里插入图片描述

4.4 概率分布图

  • 概率分布图,就是概率统计图
  • 数据在统计图中的形状,即为分布                
  • 横轴:数(即随机变量的所有不同的可能取值,包含0!!!)
  •           事件对应的随机变量(可以是次数,或试验结果记做0,1等等)
  • 纵轴:这个数对应的概率

  

4.5  概率分布之和 == 100%

  • 概率分布之和 == 100%

  • 说1都不是很准确,因为概率是百分制比例值

4.6  Σ 概率分布之和==100% == 概率分布曲线往X轴下围的面积

  • 概率分布之和==100%
  • 同时 = =概率分布曲线,往X轴下围的面积
  • 各种分布的概率之和都为1,也就是概率分布曲线的面积之和为100% (注意是pdf 不是cdf) 
  • 概率分布 == 1 == 面积恒相等原则
  • 为什么呢?
  • 因为概率分布函数和pdf上,已经列举了整个 概率所属的样本空间的所有可能情况之和,是个完备空间,这个完备空间的概率之和当然==100%

4.7 概率分布之和的面积解释                         

  • 比如正态分布的 均值,方差虽然可能不同,但是因为和=1,面积=1,所以正态分布方差大的,则图形扁扁,正态分布方差小,则图形尖尖  
  • 正态分布曲线下方围成的是面积,如果方差大,必然点分布的远的多,中间点就少,相对扁扁一些 ,数据点数量固定,根据 面积相等的原则!!
  • 面积==概率之和==1                 
  • 至少我是这么认为的  ^ ^

                     

4.8  概率分布之和==100% 可证明                       

  • 任何分布的概率和都是1.                       
  • 比如0-1分布,几何分布,超几何分布,正态分布,应该可以单独证明
  • 具体每个分布里去看吧


5 不同的概率分布的 分布图&期望方差,简单汇总

5.1 不同的概率分布的核心差异

首先不同的概率分布,所关心的 随机变量不一样

其次才是这些随机变量对应的概率分布规律和图形差别

  • 二项分布是确定n的基础上关注成功次数k这个变量的概率分布规律
  • 几何分布假设最后1次成功,关注的是总次数n这个变量的概率分布规律
  • 负二项分布假设的是假设成功k次时,总次数n这个变量的概率分布规律

5.2 不同的概率分布举例

比如

  • 01分布
  • 二项分布
  • 几何分布
  • 负二项分布
  • 超几何分布
  • 泊松分布
  • 正态分布
  • 柯西分布等等

5.3 不同分布之间的关系

5.3.1  同类分布

  • 伯努利试验:
  1. 伯努利分布(0-1分布),是二项分布试验次数=1时的特例
  2. 二项分布

  • 负二项分布(帕斯卡分布)
  1. 几何分布:是成功次数=1时的负二项分布的特例
  2. 负二项分布是离散的
  3. 负二项分布连续化,就是gamma分布

  • 几何分布
  1. 几何分布连续化就是指数分布

5.3.2 分布的极限

但是当不同的变量,逼近极限,分布的变化会朝着不同放心变化

变量趋于无穷大时

  • 超几何分布,其极限是二项分布
  • 二项分布,其极限是正态分布

当n很大,p很小的时候,二项分布会趋向于泊松分布

5.4 伯努利试验相关分布

5.4.1 0-1分布

  • 0-1分布的概率公式
  •  f(x)=p^k*(1-p)^(1-k),其中={0,1}
  • 期望:E(X)    = 0*(1-p)+1*p  =    p          
  • 方差:D(X)    = p*(1-P)    

5.4.3 二项分布

  • 如果是N重伯努利试验,试验n 次,成功k 次,则k的概率符合二项分布
  • p(x=k)=C(n,k)*p^k*(1-p)^(n-k)
  • 二项分布的期望  E(X)=n*p
  • 二项分布的方差  D(X)=n*p*(1-P)

5.5 负二项分布

5.5.1 几何分布

  • 几何分布,最后一次成功次数假设为n
  • P(x=n)=p*(1-p)^(n-1) 
  • n的数学期望     E(n) =1/p
  • n的平方差为     D(n)=(1-p)/p^2

5.6 超几何分布

特点是:离散分布---不放回抽样

5.6.1 超几何分布(有几个限制条件)

  • 超几何分布适合不放回抽样,且不能排序
  • 超几何分布还一个要求,概率必须均匀相等!
  • 其中K是目标样本数,n为抽样样本容量,k为特殊样本总数,n为总体中的个体总数,
  •  f(k,n,K,N)   =  C(k,K) * C(n-k,N-K) / C(n,N)     
  • 超几何分布的期望  E(K)=N*k/n
  • 超几何分布的方差计算公式为Vx=Xn²Pn-a²,其中a为期望值。

6 连续概率分布 (建设ing...)

6.1  连续均匀分布

6.2  正态分布

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值