高数知识梳理——无穷小量

无穷小的应用总结

无穷小量的定义

  1. 如果 ∀ ϵ \forall \epsilon ϵ > 0, ∃ ξ = ξ ( x ) \exists \xi=\xi(x) ξ=ξ(x), 当 0 &lt; ∣ x − x 0 ∣ 0&lt;|x-x_0| 0<xx0时,
    恒有 ∣ f ( x ) ∣ &lt; ϵ |f(x)|&lt;\epsilon f(x)<ϵ,
    则称函数 f ( x ) f(x) f(x)为在 x → x 0 x \rightarrow x_0 xx0时的无穷小量,简称无穷小。
  2. 如果 ∀ ϵ \forall \epsilon ϵ > 0, ∃ X = X ( ϵ ) \exists X=X(\epsilon) X=X(ϵ),当 ∣ x ∣ &gt; X |x|&gt;X x>X
    恒有 ∣ f ( x ) ∣ &lt; ϵ |f(x)|&lt;\epsilon f(x)<ϵ,
    则称函数 f ( x ) f(x) f(x)为在 x → ∞ x \rightarrow \infty x时的无穷小量。

【注】无穷小量不是很小很小的数,而是一个极限为0的函数或数列;在数里面只有0是无穷小量。

无穷小量的四则运算

  1. 有限个无穷小量的和仍是无穷小量
    【注】:此处要强调是有限个无穷小量,如果是无限个则不成立
    l i m n → + ∞ ( 1 n + 1 n + 1 n + … + 1 n ) = 1 lim_{n\rightarrow+\infty}(\frac{1}{n}+\frac{1}{n}+\frac{1}{n}+ \ldots+\frac{1}{n})=1 limn+(n1+n1+n1++n1)=1
  2. 有限个无穷小量的乘积仍是无穷小量
  3. 有界变量与无穷小量之积仍是无穷小量

无穷小的应用

洛必达法则

当极限满足 0 0 0\over0 00 ∞ ∞ \infty\over\infty 时(或 0 ⋅ ∞ 0\cdot\infty 0

  • 4
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值