旋转向量

旋转矩阵

两个矩阵相乘的意义是将右边矩阵中的每一列列向量变换到左边矩阵中每一行行向量为基所表示的空间中去

在三维世界的坐标变换中,我们经常用一个旋转矩阵来旋转一个点,比如:
在这里插入图片描述
在这里插入图片描述
绕任意轴旋转则可以分解成绕三个坐标轴旋转的叠加,最终得到的旋转矩阵 R 便是上述三个矩阵的乘积。
然而,用矩阵来表示一个旋转关系有两个缺点:
首先,通过旋转矩阵不能直观地看出旋转的方向和角度,假设给定一个旋转矩阵,要求旋转方向不变,旋转角度变成一半,那么新的旋转矩阵计算起来就比较麻烦了。
另一方面,旋转变换本身只有3个自由度,但旋转矩阵有9个元素,因此旋转矩阵中的元素不是相互独立的,这在非线性优化中会带来问题。

旋转向量
向量旋转公式最早由 Rodrigues 提出,用一个三维向量来表示三维旋转变换,该向量的方向是旋转轴,其模则是旋转角度。百度百科中有其详细的介绍与推导,我在这边只列一下最重要的公式。
设旋转向量的单位向量为 r,模为 θ。三维点(或者说三维向量)p 在旋转向量 r 的作用下变换至 p′,则:
在这里插入图片描述
这个公式和罗德里格斯公式很像。

相互转换
设旋转向量的单位向量 r=[rx ry rz]T,旋转角度为 θ,对应的旋转矩阵为 R,则 r 到 R 的转换是:
在这里插入图片描述

其中 I 是三阶单位矩阵。反过来 R 到 r 的转换则可以利用等式:
在这里插入图片描述

### 使用Python进行旋转向量计算 为了实现旋转向量的操作,在Python中通常借助NumPy库来完成复杂的数学运算。下面展示了一个具体的例子,即如何利用Python将Rodrigues旋转向量转化为旋转矩阵。 #### Rodrigues旋转向量转旋转矩阵函数定义 ```python import numpy as np def rodrigues_to_rotation_matrix(rvec): theta = np.linalg.norm(rvec) if theta < 1e-8: return np.eye(3) rvec_normalized = rvec / theta w = skew_symmetric_matrix(rvec_normalized) R = np.cos(theta) * np.eye(3) + (1 - np.cos(theta)) * np.outer(rvec_normalized, rvec_normalized) \ + np.sin(theta) * w return R def skew_symmetric_matrix(v): """构建向量v对应的反对称矩阵""" return np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]]) ``` 上述代码实现了从Rodrigues旋转向量到旋转矩阵的转换过程[^1]。`rodrigues_to_rotation_matrix` 函数接收一个三维数组作为输入参数 `rvec` ,表示旋转向量,并返回相应的旋转矩阵 `R` 。当旋转向量接近零时,则近似认为其代表单位变换(恒等变换)。对于非零长度的旋转向量,通过罗德里格斯公式构造最终的旋转矩阵。 此外,还提供了一个辅助方法 `skew_symmetric_matrix` 来创建给定向量所对应的一个特殊的反对称矩阵形式,这是在应用罗德里格斯公式过程中必需的一部分。 #### 示例用法 ```python if __name__ == "__main__": # 定义一个测试用的旋转向量 test_rvec = np.array([np.pi/4, 0., 0.]) # 调用函数得到旋转矩阵 rotation_matrix = rodrigues_to_rotation_matrix(test_rvec) print("Rotation Matrix:\n", rotation_matrix) ``` 这段脚本展示了如何调用之前定义的方法并打印出由特定旋转向量产生的旋转矩阵的结果。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fishmov

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值