pyalgotrade量化交易回测

转载请注明出处:https://blog.csdn.net/xuezoutianya/article/details/104059649

pyalgotrade官网文档http://gbeced.github.io/pyalgotrade/docs/v0.20/html/

官方给的教程很容易上手,初学者可以参考官方文档中的示例策略,唯一的问题是例程中的下载方法不适用于下载国内股票数据。

本博文介绍如何下载国内股票数据,以及如何定制化你自己的交易策略并显示回测结果。

如何下载国内股票数据

在网上查了不少博文,找到两种方式,但第一种方式我自己用会报错,这里还是列出来

  • 使用pyalgotrade_tushare模块

安装方法

pip install pyalgotrade_tushare

使用代码

# 导入pyalgotrade_tushare模块
from pyalgotrade_tushare import tools

'''
其他代码段
'''

# 股票代码,str类型,如"399300"(沪深300)
instruments = ["399300"]
# 第二个参数是起始日期,第三个参数是结束日期,第四个参数是下载目录,如"."(当前目录)
feeds = tools.build_feed(instruments, 2018, 2019, ".")
  • 自己封装函数或者模块

MyDownload.py

原代码出处https://blog.csdn.net/lawme/article/details/51495349,我添加了临时文件删除,以及格式修正

import tushare as ts
import pandas as pd
import os
 
def download_csv(code, start_date, end_date, filepath):
    data = ts.get_hist_data(code, start=start_date, end=end_date)

    # 数据存盘
    data.to_csv('temp.csv')

    # 读出数据,DataFrame格式
    df = pd.read_csv('temp.csv')

    # 从df中选取数据段,改变段名;新段'Adj Close'使用原有段'close'的数据  
    df2 = pd.DataFrame({'Date' : df['date'], 'Open' : df['open'],
                        'High' : df['high'],'Close' : df['close'],
       
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值