用Matplotlib绘制渐变的彩色曲线

Matplotlib是Python生态圈中应用最为广泛的2D绘图库,通过扩展工具包mplot3d,也可以绘制简单的3D模型。Matplotlib的使用非常简单,以绘制一条单周期的正弦曲线为例,只需要寥寥数行代码即可完成。

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 2*np.pi, 200)
y = np.sin(x)
plt.plot(x, y, color='green')
plt.show()

上面的代码在 [ 0 , 2 π ] [0, 2\pi] [0,2π]之间以均匀间隔选取了200个点,并计算它们的正弦值,再调用plot函数将这200个点的正弦值连成一条曲线,通过plot函数的color参数(也可以简写为c)设置正弦曲线的颜色为绿色——当然,也可以设置为你想要的任意一种颜色。

在这里插入图片描述

不过,略有遗憾的是,Matplotlib没有提供直接的方法为这条曲线上的每一个点设置不同的颜色,而这一需求在数据可视化方面却是非常普遍的。比如,在一条变化复杂的曲线上,如果每个点的数值越大颜色越趋近于红色,数值越小颜色越趋近于蓝色,就更容易展示数据的变化规律。

既然没有直接的方法可用,那就变通一下,将这200个点拆分成199条线段,每条线段设置不同的颜色,不就可以实现上面的需求了吗?这样做的确可行,不过需要调用plot函数199次,过程漫长到令人无法忍受,并且更新显示(比如缩放)时也会重复这个漫长的调用过程。

幸运的是,Matplotlib提供了另外一种方法,基本思路也是将这200个点拆分成199条线段,每条线段设置不同的颜色,只是不需要反复调用plot函数,因此速度和单次调用plot函数相差无几。这个方法就是Matplotlib的LineCollection对象。

在使用LineCollection之前,还需要生成199条线段的颜色。下面这个函数实现可数值到颜色的映射,给定一组数据和一个颜色映射方案,即返回每个数据的映射颜色。

import numpy as np
import matplotlib.pyplot as plt

def color_map(data, cmap):
    """数值映射为颜色"""
    
    dmin, dmax = np.nanmin(data), np.nanmax(data)
    cmo = plt.cm.get_cmap(cmap)
    cs, k = list(), 256/cmo.N
    
    for i in range(cmo.N):
        c = cmo(i)
        for j in range(int(i*k), int((i+1)*k)):
            cs.append(c)
    cs = np.array(cs)
    data = np.uint8(255*(data-dmin)/(dmax-dmin))
    
    return cs[data]

实例化LineCollection时,需要提供多条线段的列表(每条线段可以有多个点组成),以及每条线段的颜色组成的列表,也可以设置线宽和线型。如果需要绘制Colorbar的话,还需要为LineCollection指定和数据映射相同的颜色映射方案。完整代码如下。

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection

def color_map(data, cmap):
    """数值映射为颜色"""
    
    dmin, dmax = np.nanmin(data), np.nanmax(data)
    cmo = plt.cm.get_cmap(cmap)
    cs, k = list(), 256/cmo.N
    
    for i in range(cmo.N):
        c = cmo(i)
        for j in range(int(i*k), int((i+1)*k)):
            cs.append(c)
    cs = np.array(cs)
    data = np.uint8(255*(data-dmin)/(dmax-dmin))
    
    return cs[data]

x = np.linspace(0, 2*np.pi, 200)
y = np.sin(x)
ps = np.stack((x,y), axis=1)
segments = np.stack((ps[:-1], ps[1:]), axis=1)

cmap = 'viridis' # jet, hsv等也是常用的颜色映射方案
colors = color_map(np.cos(x)[:-1], cmap)
colors = color_map(y[:-1], cmap)
line_segments = LineCollection(segments, colors=colors, linewidths=3, linestyles='solid', cmap=cmap)

fig, ax = plt.subplots()
ax.set_xlim(np.min(x)-0.1, np.max(x)+0.1)
ax.set_ylim(np.min(y)-0.1, np.max(y)+0.1)
ax.add_collection(line_segments)
cb = fig.colorbar(line_segments, cmap='jet')

plt.show()

使用LineCollection绘图时,axis不会自动在x轴和y轴两端留白,通常需要调用set_xlim和set_ylim两个函数设置坐标轴的范围。最终的显示效果如下图所示。

在这里插入图片描述

### 如何使用 Matplotlib 绘制 3D 彩虹渐变曲线 为了创建带有彩虹渐变效果的三维曲线图,可以利用 `matplotlib` 的 `cm.rainbow()` 函数不同位置的数据点赋予不同颜色。下面是一个具体的实现案例: ```python import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm # 创建新的Figure对象并添加一个3D轴 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # 定义参数方程用于生成螺旋线上的坐标值 theta = np.linspace(-4 * np.pi, 4 * np.pi, 100) z = np.linspace(-2, 2, 100) r = z**2 + 1 x = r * np.sin(theta) y = r * np.cos(theta) # 将Z轴数值归一化至区间[0,1]以便作为输入给定到色彩映射函数中 norm_z = (z - z.min())/(z.max()-z.min()) # 获取对应于各高度处的颜色向量 colors = cm.rainbow(norm_z)[^1] # 在3D空间内画出彩色线条;注意这里c参数接收的是之前计算得到的颜色序列 curve = ax.plot(x, y, z, c='k', alpha=0.5) scat = ax.scatter(x, y, z, c=colors, marker='o') # 设置标签 ax.set_xlabel('X Axis') ax.set_ylabel('Y Axis') ax.set_zlabel('Z Axis') # 展示图像 plt.show() ``` 这段程序首先定义了一组遵循特定规律变化的空间坐标 `(x,y,z)` 来模拟一条复杂的三维路径。接着通过将这些坐标的某个维度(这里是选择了 Z 坐标)转换成 `[0,1]` 区间内的浮点数,从而能够被 colormap 正确解析为相应的 RGB 颜色值。最后,在绘制散点时传入这个由颜色组成的列表即可让每个点都带上独特的色调。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天元浪子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值