Pytorch主要特点是能够无缝和python语言整合,方便深度学习模型的构建和调试,以及使用动态计算图模型,灵活地实现各种需要的功能。Pytorch 的高性能和易用性使它拥有很多学术界用户的用户。目前Pytorch场景应用包含:计算机视觉和自然语言处理的应用、推荐系统、语音识别语音合成、以及强化学习的应用。本专栏主要记录PyTorch学习路径。
Tensor(张量)是PyTorch中重要的数据结构,可认为是一个高维数组。它可以是一个数(标量)、一维数组(向量)、二维数组(矩阵)以及更高维的数组。
# 导入库
from __future__ import print_function
import torch as t
t.__version__
# 构建 3x3 矩阵,只是分配了空间
x = t.Tensor(3,3)
# 初始化
x = t.Tensor([[1,2,3,],[3,4,5],[1,4,6]])
# 使用[0,1]均匀分布随机初始化二维数组
x = t.rand(3, 3)
print(x.size()) # 查看x的形状
x.size()[1], x.size(1) # 查看列的个数, 两种写法等价
#加法三种操作及对比
y = t.rand(3,3)
#第一种写法
x + y
#第二种写法
t.add(x, y)
#第三种写法
result = t.Tensor(3, 3) # 预先分配空间
t.add(x, y, out=result) # 输入到result
#对比函数名带下划线,会改变tensor内容
y.add(x

最低0.47元/天 解锁文章

328

被折叠的 条评论
为什么被折叠?



