PyTorch学习进阶1

Pytorch主要特点是能够无缝和python语言整合,方便深度学习模型的构建和调试,以及使用动态计算图模型,灵活地实现各种需要的功能。Pytorch 的高性能和易用性使它拥有很多学术界用户的用户。目前Pytorch场景应用包含:计算机视觉和自然语言处理的应用、推荐系统、语音识别语音合成、以及强化学习的应用。本专栏主要记录PyTorch学习路径。

Tensor(张量)是PyTorch中重要的数据结构,可认为是一个高维数组。它可以是一个数(标量)、一维数组(向量)、二维数组(矩阵)以及更高维的数组。

# 导入库

from __future__ import print_function
import torch as t
t.__version__

# 构建 3x3 矩阵,只是分配了空间
x = t.Tensor(3,3)

# 初始化

x = t.Tensor([[1,2,3,],[3,4,5],[1,4,6]])

# 使用[0,1]均匀分布随机初始化二维数组
x = t.rand(3, 3) 

print(x.size()) # 查看x的形状
x.size()[1], x.size(1) # 查看列的个数, 两种写法等价

#加法三种操作及对比

y = t.rand(3,3)

#第一种写法

x + y

#第二种写法

t.add(x, y)

#第三种写法

result = t.Tensor(3, 3) # 预先分配空间
t.add(x, y, out=result) # 输入到result

#对比函数名带下划线,会改变tensor内容

y.add(x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值