使用 Caffe Python 编写 LeNet

使用 Caffe Python 编写 LeNet

前言:

本文翻译自 Solving in Python with LeNet,基于深度学习框架 Caffe 的应用,运行本代码的前提是:

  1. 安装了Caffe,windows Caffe安装教程以及添加Python接口请参考Caffe安装 和编译Caffe Python接口

  2. 安装 Python 2.7,推荐使用Anaconda安装。安装完以后启动Jupyter Notebook

注:为正确运行程序,本文代码对原文代码有改动。

还有,代码中的细节我会在详解目录中陆续更新


详解目录
  1. caffe.NetSpec()
  2. Caffe solver.net.forward(),solver.test_nets[0].forward() 和 solver.step(1)

正文:

1. 开始 (Setup)

导入 pylab,画图使用。

from pylab import *

导入 caffe,添加系统变量。

caffe_root = 'D:/wincaffe/caffe-master/'  # 这是我的caffe 根目录

import sys
sys.path.insert(0, caffe_root + 'python')
import caffe

下载数据,下载好的数据请放在 D:\wincaffe\caffe-master\examples\mnist\mnist_data 目录下,我使用的是绝对路径。mnist 二进制文件需要转换为lmdb格式,我将原mnist文件和 lmdb 文件放在百度网盘mnist+lmdb (密码:h7wh)上了,不会转换的可以下载。
文件路径

2.创建网络(Creating the net)

现在我们创建一个源自1989年的经典卷积网络结构 LeNet 的变体。
我们需要两个额外的文件方便输出:

  • net prototxt:定义了指向 train/test 数据的网络结构。
  • solver prototxt : 定义了网络学习参数。
from caffe import layers as L, params as P
def lenet(lmdb, batch_size):
    # our version of LeNet: a series of linear and simple nonlinear transformations
    n = caffe.NetSpec() # 见详解目录-1

    n.data, n.label = L.Data(batch_size=batch_size, backend=P.Data.LMDB, source=lmdb,
                             transform_param=dict(scale=1./255), ntop=2)

    n.conv1 = L.Convolution(n.data, kernel_size=5, num_output=20, weight_filler=dict(type='xavier'))
    n.pool1 = L.Pooling(n.conv1, kernel_size=2, stride=2, pool=P.Pooling.MAX)
    n.conv2 = L.Convolution(n.pool1, kernel_size=5, num_output=50, weight_filler=dict(type='xavier'))
    n.pool2 = L.Pooling(n.conv2, kernel_size=2, stride=2, pool=P.Pooling.MAX)
    n.fc1 =   L.InnerProduct(n.pool2, num_output=500, weight_filler=dict(type='xavier'))
    n.relu1 = L.ReLU(n.fc1, in_place=True)
    n.score = L.InnerProduct(n.relu1, num_output=10, weight_filler=dict(type='xavier'))
    n.loss =  L.SoftmaxWithLoss(n.score, n.label)

    return n.to_proto() #写入到prototxt文件

with open('D:/wincaffe/caffe-master/examples/mnist/lenet_auto_train.prototxt', 'w') as f:
    f.write(str(lenet('D:/wincaffe/caffe-master/examples/mnist/mnist_data/mnist_train_lmdb', 64)))

with open('D:/wincaffe/caffe-master/examples/mnist/lenet_auto_test.prototxt', 'w') as f:
    f.write(str(lenet('D:/wincaffe/caffe-master/examples/mnist/mnist_data/mnist_test_lmdb', 100)))

让我们看一下 train net 的结构:

layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  transform_param {
    scale: 0.00392156862745
  }
  data_param {
    source: "D:/wincaffe/caffe-master/examples/mnist/mnist_data/mnist_train_lmdb"
    batch_size: 64
    backend: LMDB
  }
}
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  convolution_param {
    num_output: 20
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2"
  convolution_param {
    num_output: 50
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "fc1"
  type: "InnerProduct"
  bottom: "pool2"
  top: "fc1"
  inner_product_param {
    num_output: 500
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "fc1"
  top: "fc1"
}
layer {
  name: "score"
  type: "InnerProduct"
  bottom: "fc1"
  top: "score"
  inner_product_param {
    num_output: 10
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "score"
  bottom: "label"
  top: "loss"
}

还有 test net 的结构:

layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  transform_param {
    scale: 0.00392156862745
  }
  data_param {
    source: "D:/wincaffe/caffe-master/examples/mnist/mnist_data/mnist_test_lmdb"
    batch_size: 100
    backend: LMDB
  }
}
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  convolution_param {
    num_output: 20
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2"
  convolution_param {
    num_output: 50
    kernel_size: 5
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "fc1"
  type: "InnerProduct"
  bottom: "pool2"
  top: "fc1"
  inner_product_param {
    num_output: 500
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "fc1"
  top: "fc1"
}
layer {
  name: "score"
  type: "InnerProduct"
  bottom: "fc1"
  top: "score"
  inner_product_param {
    num_output: 10
    weight_filler {
      type: "xavier"
    }
  }
}
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "score"
  bottom: "label"
  top: "loss"
}

嗯,再给你看看solver的结构。这个文件在 D:\wincaffe\caffe-master\examples\mnist 中本来就存在。不过你需要根据路径自己修改一下代码中 train_net,test_net的路径。

# The train/test net protocol buffer definition
train_net: "D:/wincaffe/caffe-master/examples/mnist/lenet_auto_train.prototxt"
test_net: "D:/wincaffe/caffe-master/examples/mnist/lenet_auto_test.prototxt"
# test_iter specifies how many forward passes the test should carry out.
# In the case of MNIST, we have test batch size 100 and 100 test iterations,
# covering the full 10,000 testing images.
test_iter: 100
# Carry out testing every 500 training iterations.
test_interval: 500
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
# The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
# Display every 100 iterations
display: 100
# The maximum number of iterations
max_iter: 10000
# snapshot intermediate results
snapshot: 5000
snapshot_prefix: "mnist/lenet"
3.加载和验证solver(Loading and checking the solver)

译者注:选择设备和使用GPU。(没有安装CUDA+cuDnn的可以使用caffe.set_mode_cpu(),亲测,速度慢成屎。)

caffe.set_device(0) #选择默认gpu
caffe.set_mode_gpu()    #使用gpu

### load the solver and create train and test nets
solver = None  # ignore this workaround for lmdb data (can't instantiate two solvers on the same data)
solver = caffe.SGDSolver('C:/Users/Admin512/Desktop/MyStudy/caffe_python/LeNet/mnist/lenet_auto_solver.prototxt')

看一下中间变量的维度:

代码1:

# each output is (batch size, feature dim, spatial dim)
[(k, v.data.shape) for k, v in solver.net.blobs.items()]
  • 1
  • 2

输出1:

[('data', (64L, 1L, 28L, 28L)),
 ('label', (64L,)),
 ('conv1', (64L, 20L, 24L, 24L)),
 ('pool1', (64L, 20L, 12L, 12L)),
 ('conv2', (64L, 50L, 8L, 8L)),
 ('pool2', (64L, 50L, 4L, 4L)),
 ('fc1', (64L, 500L)),
 ('score', (64L, 10L)),
 ('loss', ())]

代码2:

# just print the weight sizes (we'll omit the biases)
[(k, v[0].data.shape) for k, v in solver.net.params.items()]

输出2:

[('conv1', (20, 1, 5, 5)),
 ('conv2', (50, 20, 5, 5)),
 ('fc1', (500, 800)),
 ('score', (10, 500))]

训练前,让我们检查一下是否一切就绪:

代码1:

# 见详解目录-2
solver.net.forward()  # train net 
solver.test_nets[0].forward()  # test net (there can be more than one)

输出1:

{'loss': array(2.365971088409424, dtype=float32)}


代码2:

# we use a little trick to tile the first eight images
imshow(solver.net.blobs['data'].data[:8, 0].transpose(1, 0, 2).reshape(28, 8*28), cmap='gray'); axis('off')
print 'train labels:', solver.net.blobs['label'].data[:8]

输出2:

train labels: [ 5.  0.  4.  1.  9.  2.  1.  3.]

这里写图片描述


代码3:

imshow(solver.test_nets[0].blobs['data'].data[:8, 0].transpose(1, 0, 2).reshape(28, 8*28), cmap='gray'); axis('off')
print 'test labels:', solver.test_nets[0].blobs['label'].data[:8]

输出3:

test labels: [ 7.  2.  1.  0.  4.  1.  4.  9.]

这里写图片描述

4.做一步solver(Stepping the solver)

训练网络和测试网看起来都在加载数据,并拥有正确的标签。

  • 让我们做一步 minibatch-SGD ,看一下发生了什么:
# 见详解目录-2
solver.step(1)

我们通过我们的滤波器(filters)进行了梯度传播吗?让我们看一下第一层的更新,这里展示了5×5的滤波器组成的4×5的网格。

代码4:

imshow(solver.net.params['conv1'][0].diff[:, 0].reshape(4, 5, 5, 5)
       .transpose(0, 2, 1, 3).reshape(4*5, 5*5), cmap='gray'); axis('off')

输出4:

(-0.5, 24.5, 19.5, -0.5)

这里写图片描述

5.编写一个自定义的训练循环(Writing a custom training loop)

Something is happening. 我们让网络运行一段时间,运行期间我们保持跟踪一些事情。注意,这个过程和通过caffe二进制训练一样。特别是:

  • 日志记录将继续正常进行。
  • 在solver prototxt 指定的间隔获取快照(在这里,间隔取5000次迭代)
  • 在指定的间隔进行测试(在这里,间隔取500次迭代)

因为我们可以使用 Python 控制循环,我们可以自由的计算额外的东西,就像下面展示的一样。我们也可以做一些别的事情,比如:

  • 写一个自定义的停止标准
  • 通过更新循环中的网络来改变求解过程

代码5:

%%time
niter = 200
test_interval = 25
# losses will also be stored in the log
train_loss = zeros(niter)
test_acc = zeros(int(np.ceil(niter / test_interval)))
output = zeros((niter, 8, 10))

# the main solver loop
for it in range(niter):
    solver.step(1)  # SGD by Caffe

    # store the train loss
    train_loss[it] = solver.net.blobs['loss'].data

    # store the output on the first test batch
    # (start the forward pass at conv1 to avoid loading new data)
    solver.test_nets[0].forward(start='conv1')
    output[it] = solver.test_nets[0].blobs['score'].data[:8]

    # run a full test every so often
    # (Caffe can also do this for us and write to a log, but we show here
    #  how to do it directly in Python, where more complicated things are easier.)
    if it % test_interval == 0:
        print 'Iteration', it, 'testing...'
        correct = 0
        for test_it in range(100):
            solver.test_nets[0].forward()
            correct += sum(solver.test_nets[0].blobs['score'].data.argmax(1)
                           == solver.test_nets[0].blobs['label'].data)
        test_acc[it // test_interval] = correct / 1e4

输出5:
(貌似我的GPU比他们的好不少!)

Iteration 0 testing...
Iteration 25 testing...
Iteration 50 testing...
Iteration 75 testing...
Iteration 100 testing...
Iteration 125 testing...
Iteration 150 testing...
Iteration 175 testing...
Wall time: 2.3 s

我们看一下训练损失函数和测试正确率

代码6:

_, ax1 = subplots()
ax2 = ax1.twinx()
ax1.plot(arange(niter), train_loss)
ax2.plot(test_interval * arange(len(test_acc)), test_acc, 'r')
ax1.set_xlabel('iteration')
ax1.set_ylabel('train loss')
ax2.set_ylabel('test accuracy')
ax2.set_title('Test Accuracy: {:.2f}'.format(test_acc[-1]))

输出6:

<matplotlib.text.Text at 0x32b3fb38>
  • 1

这里写图片描述

损失函数下降的很快,而且收敛(except for stochasticity,我觉得这句话翻译成除了局部随机性),相应的,正确率在上升。Hooray!


因为我们在第一次测试batch中保存了结果,所以我们可以观察我们的预测分数是如何演变的。x轴是迭代次数,y轴是标签。

代码7:

for i in range(8):
    figure(figsize=(2, 2))
    imshow(solver.test_nets[0].blobs['data'].data[i, 0], cmap='gray')
    figure(figsize=(10, 2))
    imshow(output[:50, i].T, interpolation='nearest', cmap='gray')
    xlabel('iteration')
    ylabel('label')

输出7:

这里写图片描述

我们刚开始对这些数字(digit)一点都不了解,但是最后我们对每个数字都有正确的分类。随着分类的进行,你会发现识别最后的数字是非常困难的,倾斜的“9”很容易和“4”混淆。


注意:以上都是原始的输出而不是 softmax 计算的概率向量。如下所示,后者很容易表示我们的网络的 confidence (但是很难看到难以识别数字的分数)。

代码8:

for i in range(8):
    figure(figsize=(2, 2))
    imshow(solver.test_nets[0].blobs['data'].data[i, 0], cmap='gray')
    figure(figsize=(10, 2))
    imshow(exp(output[:50, i].T) / exp(output[:50, i].T).sum(0), interpolation='nearest', cmap='gray')
    xlabel('iteration')
    ylabel('label')####

输出8:

这里写图片描述


6.网络结构和优化的实验(Experiment with architecture and optimization)

现在,我们已经定义,训练和测试了LeNet,下一步要做什么有很多可能的方向:

  • 定义新的网络结构进行比较
  • 通过设置 base_lr 和简单的训练更长的时间进行调优。
  • SGD 改成有适应能力的方法如 AdaDelta 或者 Adam

随意地通过编辑以下的多功能示例来探索这些方向。寻找“ EDIT HERE ”的注释所建议的修改要点。
默认情况下,它定义了一个简单的线性分类器作为基准。
In case your coffee hasn’t kicked in and you’d like inspiration, try out!!!

  1. ReLU 转换为非线性的 ELU Sigmoid
  2. 添加更多的连接和非线性层
  3. 以10×的倍数改变学习率
  4. 将solver type改为 Adam
  5. niter 设置的更大让训练变得更长,让训练结果更好 。

代码9:

train_net_path = 'mnist/custom_auto_train.prototxt'
test_net_path = 'mnist/custom_auto_test.prototxt'
solver_config_path = 'mnist/custom_auto_solver.prototxt'

### define net
def custom_net(lmdb, batch_size):
    # define your own net!
    n = caffe.NetSpec()

    # keep this data layer for all networks
    n.data, n.label = L.Data(batch_size=batch_size, backend=P.Data.LMDB, source=lmdb,
                             transform_param=dict(scale=1./255), ntop=2)

    # EDIT HERE to try different networks
    # this single layer defines a simple linear classifier
    # (in particular this defines a multiway logistic regression)
    n.score =   L.InnerProduct(n.data, num_output=10, weight_filler=dict(type='xavier'))

    # EDIT HERE this is the LeNet variant we have already tried
    # n.conv1 = L.Convolution(n.data, kernel_size=5, num_output=20, weight_filler=dict(type='xavier'))
    # n.pool1 = L.Pooling(n.conv1, kernel_size=2, stride=2, pool=P.Pooling.MAX)
    # n.conv2 = L.Convolution(n.pool1, kernel_size=5, num_output=50, weight_filler=dict(type='xavier'))
    # n.pool2 = L.Pooling(n.conv2, kernel_size=2, stride=2, pool=P.Pooling.MAX)
    # n.fc1 =   L.InnerProduct(n.pool2, num_output=500, weight_filler=dict(type='xavier'))
    # EDIT HERE consider L.ELU or L.Sigmoid for the nonlinearity
    # n.relu1 = L.ReLU(n.fc1, in_place=True)
    # n.score =   L.InnerProduct(n.fc1, num_output=10, weight_filler=dict(type='xavier'))

    # keep this loss layer for all networks
    n.loss =  L.SoftmaxWithLoss(n.score, n.label)

    return n.to_proto()

with open(train_net_path, 'w') as f:
    f.write(str(custom_net('mnist/mnist_train_lmdb', 64)))    
with open(test_net_path, 'w') as f:
    f.write(str(custom_net('mnist/mnist_test_lmdb', 100)))

### define solver
from caffe.proto import caffe_pb2
s = caffe_pb2.SolverParameter()

# Set a seed for reproducible experiments:
# this controls for randomization in training.
s.random_seed = 0xCAFFE

# Specify locations of the train and (maybe) test networks.
s.train_net = train_net_path
s.test_net.append(test_net_path)
s.test_interval = 500  # Test after every 500 training iterations.
s.test_iter.append(100) # Test on 100 batches each time we test.

s.max_iter = 10000     # no. of times to update the net (training iterations)

# EDIT HERE to try different solvers
# solver types include "SGD", "Adam", and "Nesterov" among others.
s.type = "SGD"

# Set the initial learning rate for SGD.
s.base_lr = 0.01  # EDIT HERE to try different learning rates
# Set momentum to accelerate learning by
# taking weighted average of current and previous updates.
s.momentum = 0.9
# Set weight decay to regularize and prevent overfitting
s.weight_decay = 5e-4

# Set `lr_policy` to define how the learning rate changes during training.
# This is the same policy as our default LeNet.
s.lr_policy = 'inv'
s.gamma = 0.0001
s.power = 0.75
# EDIT HERE to try the fixed rate (and compare with adaptive solvers)
# `fixed` is the simplest policy that keeps the learning rate constant.
# s.lr_policy = 'fixed'

# Display the current training loss and accuracy every 1000 iterations.
s.display = 1000

# Snapshots are files used to store networks we've trained.
# We'll snapshot every 5K iterations -- twice during training.
s.snapshot = 5000
s.snapshot_prefix = 'mnist/custom_net'

# Train on the GPU
s.solver_mode = caffe_pb2.SolverParameter.GPU

# Write the solver to a temporary file and return its filename.
with open(solver_config_path, 'w') as f:
    f.write(str(s))

### load the solver and create train and test nets
solver = None  # ignore this workaround for lmdb data (can't instantiate two solvers on the same data)
solver = caffe.get_solver(solver_config_path)

### solve
niter = 250  # EDIT HERE increase to train for longer
test_interval = niter / 10
# losses will also be stored in the log
train_loss = zeros(niter)
test_acc = zeros(int(np.ceil(niter / test_interval)))

# the main solver loop
for it in range(niter):
    solver.step(1)  # SGD by Caffe

    # store the train loss
    train_loss[it] = solver.net.blobs['loss'].data

    # run a full test every so often
    # (Caffe can also do this for us and write to a log, but we show here
    #  how to do it directly in Python, where more complicated things are easier.)
    if it % test_interval == 0:
        print 'Iteration', it, 'testing...'
        correct = 0
        for test_it in range(100):
            solver.test_nets[0].forward()
            correct += sum(solver.test_nets[0].blobs['score'].data.argmax(1)
                           == solver.test_nets[0].blobs['label'].data)
        test_acc[it // test_interval] = correct / 1e4

_, ax1 = subplots()
ax2 = ax1.twinx()
ax1.plot(arange(niter), train_loss)
ax2.plot(test_interval * arange(len(test_acc)), test_acc, 'r')
ax1.set_xlabel('iteration')
ax1.set_ylabel('train loss')
ax2.set_ylabel('test accuracy')
ax2.set_title('Custom Test Accuracy: {:.2f}'.format(test_acc[-1]))

输出9:

Iteration 0 testing...
Iteration 25 testing...
Iteration 50 testing...
Iteration 75 testing...
Iteration 100 testing...
Iteration 125 testing...
Iteration 150 testing...
Iteration 175 testing...
Iteration 200 testing...
Iteration 225 testing...

<matplotlib.text.Text at 0x7f5199af9f50>

这里写图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值