
预训练的大型语言模型(LLMs)仅能执行下一个词预测任务,这使得它们无法直接回答问题。因此需要对这些基础模型进行指令-答案对的微调,使其成为有用的助手。但这一过程仍可能存在缺陷:经过微调的 LLMs 可能存在偏见、毒性或危害性等问题。这正是人类反馈强化学习(RLHF)的用武之地。
RLHF 会为 LLM 提供不同答案,这些答案根据期望行为(有用性、毒性等)进行排序。模型通过学习输出候选答案中的最佳选项,从而模仿我们期望灌输的行为模式。虽然常被视为审查模型的手段,但该流程近期已成为提升模型性能的热门方法,如 neural-chat-7b-v3-1 所展示的那样。
在本文中,我们将通过使用类似 RLHF 的技术——直接偏好优化(DPO)来微调 OpenHermes-2.5,从而创建 NeuralHermes-2.5 模型。为此,我们将引入偏好数据集,阐述 DPO 算法的工作原理,并将其应用于我们的模型。我们将看到这种方法能显著提升基础模型在 Open LLM 排行榜上的表现。


订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



