使用DPO微调 Mistral-7b 模型

 预训练的大型语言模型(LLMs)仅能执行下一个词预测任务,这使得它们无法直接回答问题。因此需要对这些基础模型进行指令-答案对的微调,使其成为有用的助手。但这一过程仍可能存在缺陷:经过微调的 LLMs 可能存在偏见、毒性或危害性等问题。这正是人类反馈强化学习(RLHF)的用武之地。

RLHF 会为 LLM 提供不同答案,这些答案根据期望行为(有用性、毒性等)进行排序。模型通过学习输出候选答案中的最佳选项,从而模仿我们期望灌输的行为模式。虽然常被视为审查模型的手段,但该流程近期已成为提升模型性能的热门方法,如 neural-chat-7b-v3-1 所展示的那样。

在本文中,我们将通过使用类似 RLHF 的技术——直接偏好优化(DPO)来微调 OpenHermes-2.5,从而创建 NeuralHermes-2.5 模型。为此,我们将引入偏好数据集,阐述 DPO 算法的工作原理,并将其应用于我们的模型。我们将看到这种方法能显著提升基础模型在 Open LLM 排行榜上的表现。

🥇 偏好数据集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

runner000001

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值