ubuntu 22使用问题处理集合

1. Ubuntu 22.10连接蓝牙耳机报错br-connection-profile-unavailable解决方法

先是通过解决Linux(ubuntu)蓝牙耳机无法连接的问题安装了blueman,然后连接的时候,一直报错

 br-connection-profile-unavailable

随后根据Ubuntu 22.10连接蓝牙耳机报错br-connection-profile-unavailable解决方法安装了wireplumber libspa-0.2-bluetooth,重启后可以正常连接

sudo apt install wireplumber libspa-0.2-bluetooth   # 安装依赖包,wireplumber-doc可以选择性安装
systemctl --user restart wireplumber   # 重启wireplumber

1. AppImage无法运行(添加权限等简单方法无效)

./xxx.AppImage --appimage-extract-and-run --no-sandbox  # 直接添加命令使用
./xxx.AppImage --appimage-extract  # 解压后,双击运行AppRun
./xxx.AppImage --appimage-extract-and-run
./xxx.AppImage --no-sandbox # 已上代码都可能需要添加sudo

参考:ubuntu22.04踩坑笔记–mendeley安装中APPimage打不开及闪退问题
AppImage应用启动报错:Cannot mount AppImage, please check your FUSE setup

3. 无法在Ubuntu上启动uiautomatorviewer

uiautomatorviewer的位置在/Sdk/tools/bin下,sdk的地址默认是/home/用户名/Android/Sdk/,也可以查看AS上显示的SDK位置。

./uiautomatorviewer  # 运行后出现以下报错
     
-Djava.ext.dirs=/home/用户名/Android/Sdk/tools/lib/x86_64:/home/zhangtao/Android/Sdk/tools/lib is    not supported.  Use -classpath instead.
Error: Could not create the Java Virtual Machine.
Error: A fatal exception has occurred. Program will exit.
java --version   # 查看一下当前java版本
     
openjdk 11.0.19 2023-04-18
OpenJDK Runtime Environment (build 11.0.19+7-post-Ubuntu-0ubuntu122.04.1)
OpenJDK 64-Bit Server VM (build 11.0.19+7-post-Ubuntu-0ubuntu122.04.1, mixed mode, sharing)

因为 uiautomatorviewer需要使用java8,所有报错,当前是java11,下载并选择java8即可

sudo update-alternatives --config java    # 查看已经安装的java版本
     
有 2 个候选项可用于替换 java (提供 /usr/bin/java)。

    选择           路径                                            优先级       状态
    --------------------------------------------------------------------------------
   * 0            /usr/lib/jvm/java-11-openjdk-amd64/bin/java      1111      自动模式
     1            /usr/lib/jvm/java-11-openjdk-amd64/bin/java      1111      手动模式
     2            /usr/lib/jvm/java-8-openjdk-amd64/jre/bin/java   1081      手动模式

要维持当前值[*]请按<回车键>,或者键入选择的编号:2    # 这里选择2,因为2是java8
 
 # 如果上面没有java8可以选,则说明没安装java8,使用以下命令安装java8后重试
apt-get install openjdk-8-jdk

参考:无法在Ubuntu上启动uiautomatorviewer

### 配置 GPU 加速以实现高效的点云处理 为了在 Ubuntu 系统上配置 GPU 加速来高效地处理点云数据,需要安装一系列必要的库和支持工具。这不仅涉及基础的操作系统环境准备,还包括特定于点云处理的软件包。 #### 安装 NVIDIA 显卡驱动程序 确保已正确安装适用于系统的最新版本 NVIDIA 显卡驱动程序。可以通过官方文档获取详细的安装指南[^1]。这是启用 GPU 计算的前提条件之一。 #### 安装 CUDA 工具包 CUDA 是由 NVIDIA 开发的一个平行计算平台和应用程序接口(API),它允许开发者利用 GPU 的强大性能来进行通用目的运算。对于希望使用 GPU 进行加速的应用来说,安装 CUDA 至关重要。建议按照官方说明完成 CUDA 的安装过程,并验证其是否正常工作。 #### 设置 cuDNN 库 cuDNN 是一个针对深度神经网络应用优化过的高性能库,能够显著提升训练速度。下载与所使用的 CUDA 版本兼容的 cuDNN 后解压并将文件复制到相应目录下即可完成设置。 #### 安装 TensorFlow 或 PyTorch 深度学习框架 选择合适的深度学习框架如 TensorFlow 或者 PyTorch 来加载预训练模型或编写自定义算法。这两个框架都提供了良好的 GPU 支持选项,在安装过程中需指定要链接至哪个版本的 CUDA 和 cuDNN[^3]。 #### 编译 PCL Point Cloud Library with VTK and FLANN support Point Cloud Library (PCL) 是一个专门用来处理三维点云数据的强大开源库。编译带有 VTK 可视化功能以及快速最近邻搜索算法FLANN支持的 PCL 将有助于更有效地管理和分析大规模点云集合。具体步骤如下: ```bash sudo apt-essential libvtk7-dev libflann1.9 libeigen3-dev git clone https://github.com/PointCloudLibrary/pcl.git cd pcl mkdir build && cd build cmake .. -DVTK_DIR=/usr/lib/x86_64-linux-gnu/vtk-7.1/ make -j$(nproc) sudo make install ``` 以上命令会从源码编译最新的 PCL 并开启 GPU 加速特性,同时关联之前提到的一些依赖项如 VTK、FLANN 和 Eigen。 #### 使用 Open3DSOT 实现 LiDAR 数据的目标跟踪 如果专注于自动驾驶领域内的点云单目标追踪,则可以考虑采用基于 PyTorch Lightning 构建的 Open3DSOT 框架。此项目已经集成了多种先进的 SOT 方法论和技术栈,可以直接应用于实际场景中去测试效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值