nyoj--300 Kiki & Little Kiki 2(矩阵快速幂)

这篇博客介绍了如何运用矩阵快速幂的方法解决nyoj 300题目,通过构造矩阵并进行运算,高效处理了高达10^8次的操作,实现了题目的高效求解。
摘要由CSDN通过智能技术生成

nyoj 300

题解

操作函数: f(i)=f(i)^f((i1+n)%n)

一共有 m 次操作,而m可以达到 108 的数量级,所以考虑构造一个矩阵加速运算。
构造矩阵: 以 n=4 为例
E=1001110001100011
每一列的两个1和操作函数相对应。
这样,每次乘上这个矩阵就是一次操作的结果。
设初始矩阵 A AEm就是最后的答案。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;

const int N = 102;

struct mat{
    int r, c;
    int M[N][N];
    mat(int r, int c):r(r), c(c) { memset(M, 0, sizeof(M)); }
};

mat mul(mat& A, mat& B)
{
    mat C(A.r, B.c);
    for(int i = 0; i < A.r; ++i)
        for(int j = 0; j < A.c; ++j)
            if(A.M[i][j]){    //优化,只有state为1的时候才需要改变
                for(int k = 0; k < B.r; ++k)
                    if(B.M[j][k])
                        C.M[i][k] ^= A.M[i][j] & B.M[j][k];
            }
    return C;
}


mat pow(mat& A, int k)
{
    mat B(A.r, A.c);
    for(int i = 0; i < A.r; ++i) B.M[i][i] = 1;

    while(k){
        if(k & 1) B = mul(B, A);
        A = mul(A, A);
        k >>= 1;
    }
    return B;
}

int main()
{
    int m;
    char t[105];

    while(scanf("%d %s", &m, t) != EOF)
    {
        int n = strlen(t);
        mat A(1, n);
        mat T(n, n);
        for(int i = 0; i < n; ++i)
        {
            A.M[0][i] = t[i] - '0';
            T.M[i][i] = T.M[i][(i + 1) % n] = 1;
        }

        T = pow(T, m);
        A = mul(A, T);

        for(int i = 0; i < n; ++i)
        {
            printf("%d", A.M[0][i]);
        }
        printf("\n");
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值