题解
操作函数: f(i)=f(i)^f((i−1+n)%n)
一共有
m
次操作,而
构造矩阵: 以
n=4
为例
E=∣∣∣∣∣∣1001110001100011∣∣∣∣∣∣
每一列的两个1和操作函数相对应。
这样,每次乘上这个矩阵就是一次操作的结果。
设初始矩阵
A
,
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 102;
struct mat{
int r, c;
int M[N][N];
mat(int r, int c):r(r), c(c) { memset(M, 0, sizeof(M)); }
};
mat mul(mat& A, mat& B)
{
mat C(A.r, B.c);
for(int i = 0; i < A.r; ++i)
for(int j = 0; j < A.c; ++j)
if(A.M[i][j]){ //优化,只有state为1的时候才需要改变
for(int k = 0; k < B.r; ++k)
if(B.M[j][k])
C.M[i][k] ^= A.M[i][j] & B.M[j][k];
}
return C;
}
mat pow(mat& A, int k)
{
mat B(A.r, A.c);
for(int i = 0; i < A.r; ++i) B.M[i][i] = 1;
while(k){
if(k & 1) B = mul(B, A);
A = mul(A, A);
k >>= 1;
}
return B;
}
int main()
{
int m;
char t[105];
while(scanf("%d %s", &m, t) != EOF)
{
int n = strlen(t);
mat A(1, n);
mat T(n, n);
for(int i = 0; i < n; ++i)
{
A.M[0][i] = t[i] - '0';
T.M[i][i] = T.M[i][(i + 1) % n] = 1;
}
T = pow(T, m);
A = mul(A, T);
for(int i = 0; i < n; ++i)
{
printf("%d", A.M[0][i]);
}
printf("\n");
}
return 0;
}