poj--1306 Combinations(组合数)

poj 1306

题意

计算组合数 (nm)

题解

没有取模又需要求精确解,阶乘计算不得,逆元求不得。
根据二项式系数公式:
(nm)=(n1m)+(n1m1)
直接递推求解。

#include <iostream>
#include <cstdio>
using namespace std;

typedef long long ll;
const int maxn = 100 + 10;

struct Solution{
    ll  c[maxn][maxn];
    int n, m;

    void read(int _n, int _m){ n = _n, m = _m; }

    Solution():n(0), m(0){ dp(); }

    void dp(){
        for(int i = 0; i < maxn; ++i) c[i][0] = 1;
        for(int i = 1; i < maxn; ++i){
            for(int j = 1; j < maxn; ++j)
                c[i][j] = c[i - 1][j] + c[i - 1][j - 1];
        }
    }

    void solve(){
        printf("%d things taken %d at a time is %I64d exactly.\n", n, m, c[n][m]);
    }

};
int main()
{
    int n, m;
    Solution s;
    while(cin >> n >> m && (n || m)){
        s.read(n, m);
        s.solve();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值